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Welcome to the Tenth Annual Event 

Akif Ündar, PhD  

Penn State Hershey Pediatric Cardiovascular Research Center, Department of Pediatrics, Surgery and 
Bioengineering, Penn State Hershey College of Medicine, Penn State Hershey Children’s Hospital, 
Hershey, PA, USA 

I am honored to welcome you to the 10th 
International Conference on Pediatric Mechanical 
Circulatory Support Systems and Pediatric 
Cardiopulmonary Perfusion at the Hall of Flags, 
University of Pennsylvania, Philadelphia, PA, USA, 
May 28–31, 2014.  

The overall objective of the conference has been 
and still is to bring together internationally known 
clinicians, bioengineers, and basic scientists 
involved in research on pediatric mechanical 
circulatory support (MCS) systems and pediatric 
cardiopulmonary bypass (CPB) procedures. 
Primarily, we focus on explicitly describing the 
problems with current pediatric MCS systems, 
methods, and techniques during acute and 
chronic support and suggesting solutions and 
future directions for research. Year after year, we 
have not only fulfilled our primary objective but 
also improved by adding several wet labs during 
which we have tried out cutting-edge new devices 
and conducted animal experiments (1,2).  

There is no question that over the past decade, 
this unique event has become not only the 
recognized international forum at which to share 
the latest developments in terms of devices and 
techniques for pediatric CPB and MCS but also 
the place to start new national and international 
collaborations in this underserved population. 
More than 2250 leading international scholars 
from 33 countries have participated in the past 
nine events. However, it is the peerreviewed 
publications that have been the most significant 
products of these past events. Over 400 
publications, including original articles, editorials, 
special reports, and case reports, have been 
peerreviewed and published in Artificial Organs. 
These publications have become the largest 
resource for investigators in research projects 
related to pediatric CPB and MCS.   

Chitra Ravishankar, MD, is the local scientific 
chair of the 10th event. The co-chairs of the event 
are Tami Rosenthal, CCP, MBA (perfusion); 
Kerem Pekkan, PhD (bioengineering); Vinay M. 
Nadkarni, MD (extracorporeal cardiopulmonary 
resuscitation), Shigang Wang, MD; J. Brian Clark, 
MD; and John L. Myers, MD. 

The scientific program of the 10th event will start 
on May 29, 2014, with a plenary session entitled 
“Pediatric MCS and Heart Transplantation: 
Current and Future Trends,” followed by the first 
Keynote Lecture, entitled “Aortic Valve Surgery in 
Neonates, Infants, and Children: Has Anything 
Changed During My Career?,” by Thomas L. 
Spray, MD, who is Chief of the Division of 
Cardiothoracic Surgery and Alice Langdon 
Warner Endowed Chair in Pediatric 
Cardiothoracic Surgery at The Children’s Hospital 
of Philadelphia and Professor of Surgery at 
Perelman School of Medicine at the University of 
Pennsylvania, Philadelphia, PA, USA. Dr. Spray 
will be introduced by Stephanie Fuller, MD, also of 
the Children’s Hospital of Philadelphia.  

The program will continue in the afternoon with 
two more plenary sessions entitled “Minimizing 
Adverse Effects of CPB & ECLS: a 
Multidisciplinary Team Approach” and “ECPR & 
ECLS: Utilization, Management, and Outcomes.”  

Plenary Session 4, entitled “Engineering 
Approach to Pediatric Cardiovascular Medicine” 
and organized by Dr. Kerem Pekkan, will be held 
on the second day. It will include several national 
and international scholars with multidisciplinary 
backgrounds. The second Keynote Lecture, 
entitled “Individualized Strategy for HLHS: 
Norwood/Sano, Norwood/BT Shunt, or Hybrid?,” 
will be introduced by Paul Chai, MD, of Columbia 
University Medical Center and presented by Emile 
Bacha, MD, FACS, who is Calvin F. Barber 
Professor of Surgery at Columbia University; 
Chief of the Division of Cardiac, Thoracic & 
Vascular Surgery at Columbia University Medical 
Center; and Director of Pediatric Cardiac Surgery 
at Morgan Stanley Children’s Hospital and 
NewYork–Presbyterian Hospital, New York, NY, 
USA. The second day will continue with Plenary 
Session 5, entitled “VAD & ECLS,” followed by 
several wet labs on the topic of “Hands-On 
Experience With the Newest Pediatric 
CPB/ECLS/MCS Systems.” These 3-hour wet 
labs will be accompanied by parallel interactive 
training at the Children’s Hospital of Philadelphia, 
entitled “ECLS Simulator Training at CHOP,” with 
Roxanne Kirsch, MD; Stacie B. Peddy, MD; and 
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Roberta L. Hales, MHA, RRT-NPS, RN, serving 
as instructors. This program is for ICU physicians, 
cardiothoracic surgeons, nurses, perfusionists, 
and respiratory therapists involved in cannulation 
and management in extracorporeal membrane 
oxygenation (ECMO). The program will use 
simulation to facilitate hands-on training in 
extracorporeal cardiopulmonary resuscitation. In 
addition, this program focuses on techniques to 
train residents/fellows and nurses for a successful 
ECMO program as well as techniques to build a 
simulation program. The program will run twice in 
the afternoon, and each run will accommodate a 
maximum of 20 participants.  

Sessions on “Cardiac ICU Rounds and Case 
Presentations at CHOP” will be held in the cardiac 
ICU (CICU) at the Children’s Hospital of 
Philadelphia and led by CICU staff. Each session 
will be interactive, and active discussion from 
attendees will be invited regarding all aspects of 
management and outcomes. There will be two 
sessions, each of 90 minutes’ duration, and space 
is restricted to 25 participants for each session. 
The session will be suitable for all staff involved in 
the management of critically ill children with heart 
disease and will include a tour of the unit and 
discussion regarding resources and staffing 
requirements. 

The final day of the event will begin with the sixth 
plenary session, entitled “Pediatric Perfusion: 
2014 Update,” including national and international 
experts discussing the latest results in pediatric 
perfusion. The conference will end with a regular 
slide presentation session of slides selected from 
submitted abstracts. Ten regular slide presenters 
will cover the latest results of research on the 
pediatric MCS, CPB and extracorporeal life 
support procedures.  

This unique event will continue to recognize 
young investigators, including medical and 
engineering graduate students, research 
assistants, and junior faculty members in all 
related disciplines. Young Investigator Awards will 
be awarded based on full manuscripts. In addition, 
a special travel award will be given to the 
investigator who travels the longest distance to 
attend the conference.  

Further details regarding this event, including 
scientific program, Young Investigator Awards, 
and publications, can be accessed via the 
conference website at 
http://pennstatehershey.org/web/pedscpb/home. 

Research findings reported during the past nine 
conferences have already made a significant 
impact on the treatment of pediatric cardiac 
patients worldwide. As we have written several 
times before, our motto continues to be “If the 
course of just one child’s life is improved as a 
result of this event, we have reached our goal.”  

Once again, I am honored to welcome each of 
you to this unique event.  

Akif Ündar, PhD  
Professor of Pediatrics, Surgery & Bioengineering 

Penn State Hershey College of Medicine, 
Department of Pediatrics—H085  

500 University Drive, P.O. Box 850 
Hershey, PA 17033-0850, USA  

Phone: (717) 531-6706; Fax (717) 531-0355; 
E-mail: aundar@psu.edu 
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Assistant; Angela T. Hadsell, Executive Editor; 
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and for their continued support year after year.  
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Final Scientific Program 

WEDNESDAY, MAY 28, 2014 

1:00 – 5:00pm  ON-SITE REGISTRATION (Only if Space is Available) 

THURSDAY, MAY 29, 2014 

7:00 – 8:00am Breakfast / Conference Registration 

8:00 – 8:15am WELCOME 

Akif Ündar, PhD, Penn State Hershey Children’s Hospital & Penn State 

Hershey College of Medicine, Hershey, PA, USA  

Chitra Ravishankar, MD, (Local Chair), Children’s Hospital of 

Philadelphia (CHOP), Philadelphia, PA, USA 

8:15 - 10:00am PLENARY SESSION #1:  

Pediatric MCS and Heart Transplantation: Current and Future 

Trends (20 min Each) 

Moderators: William S. Pierce, MD, Hershey, PA, USA, Joseph Rossano, 

MD, Philadelphia, PA, USA, and J. Brian Clark, MD, Hershey, PA, USA 

IL1. Diagnosis and Management of Myocarditis in Children 

Matthew O'Connor, MD, Philadelphia, PA, USA 

IL2. The Use of VAD Support in Children: the State of the Art 

Christopher Mascio, MD, Philadelphia, PA, USA 

IL3. Myths and Facts of Pulsatile Flow during Acute and Chronic MCS in 

Neonates and Infants 

Akif Ündar, PhD, Hershey, PA, USA 

IL4. Pediatric Cardiac Transplantation for Complex Congenital Heart 

Disease 

Paul Chai, MD, New York, NY, USA 

IL5. VADs and Outcomes Post Transplantation: What We Know and 

What We Don’t Know? 

Pirooz Eghtesady MD, PhD, St. Louis, MO, USA 

10:00 - 10:45am Coffee Break/Exhibits/Posters  

10:45 - Noon  Key Note Lecture #1:  

Aortic Valve Surgery in Neonates, Infants, and Children: Has 

Anything Changed during My Career? 

Thomas L. Spray, MD, Chief, Division of Cardiothoracic Surgery, Alice 

Langdon Warner Endowed Chair in Pediatric Cardiothoracic Surgery, 

Professor of Surgery, Perelman School of Medicine at the University of 

Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA, 

USA 

Introduction: Stephanie Fuller, MD, Philadelphia, PA, USA 



 

 

8 

 

11:45am – Noon Presentation of Young Investigators’ Awards 

 

Noon - 1:00pm Lunch Break 

 

1:00 - 3:00pm  PLENARY SESSION #2:  

Minimizing Adverse Effects of CPB: a Multi-disciplinary Team 

Approach (20 min Each) 

Moderators: Paul Chai, MD, New York, NY, USA, Pirooz Eghtesady MD, 

PhD, St. Louis, MO, USA and Talya Frey, CCP, Philadelphia, PA, USA 

IL6. Anesthesiologist’ Perspective 

Aruna Nathan, MD, Philadelphia, PA, USA 

IL7. Surgeon’s Perspective 

Emre Belli, MD, Le Plessis Robinson, France 

IL8. Perfusionist’s Perspective 

David Palanzo, CCP, Hershey, PA, USA 

IL9. Cardiac Intensivist’s Perspective 

Roxanne Kirsch MD, Philadelphia, PA, USA 

IL10. Apolipoprotein E Levels in Pediatric Patients Undergoing 

Cardiopulmonary Bypass 

Mehmet Aĝırbaşlı, MD, Istanbul, Turkey 

IL11. Alternative Transcatheter Procedures to Surgery in the Treatment of 

Congenital Heart Disease 

Ender Ödemiş, MD, Istanbul, Turkey 

 

3:00 - 3:45am Coffee Break/Exhibits/Posters/Wet-Labs 

 

3:45 - 5:45pm  PLENARY SESSION #3:  

ECPR & ECLS: Utilization, Management, and Outcomes (20 min 

Each) 

Moderators: Vinay M. Nadkarni, MD, Philadelphia, PA, USA, Stephanie 

Fuller, MD, Philadelphia, PA, USA and Ravi Thiagarajan, MD, Boston, 

MA, USA 

IL12. The Utilization of ECPR in the Pediatric Population 

Javier Lasa, MD, Philadelphia, PA, USA 

IL13. Outcomes of ECPR for Cardiac Indications  

Maryam Naim, MD, Philadelphia, PA, USA 

IL14. Role of Post Arrest Management and Neuromonitoring in Improving 

Outcomes  

   Alexis Topjian, MD, Philadelphia, PA, USA 
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IL15. Novel Diagonal ECLS System Improves Outcomes in Pediatric 

Cardiac Patients  

Sertaç Haydin, MD, Istanbul, Turkey 

IL16. Long-term Outcome and Quality of Life after ECLS  

   Ravi Thiagarajan, MD, Boston, MA, USA 

IL17. Impact of the Recent Influenza Season on ECMO Programs 

 David Palanzo, CCP, Hershey, PA, USA 
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FRIDAY, MAY 30, 2014 

 

7:00 – 8:00 am Breakfast / Conference registration 

 

8:00 – 10:00am  PLENARY SESSION #4:  

Engineering Approach to Pediatric Cardiovascular Medicine (20 min 

Each) 

Moderators: Kerem Pekkan, PhD, Pittsburgh, PA, USA and Giovanni 

Battista Luciani, MD, Verona, Italy 

IL18. An Intravascular Therapeutic Device for Pediatric Patients with 

Congenital Heart Disease: Mechanical Support of the Fontan 

Physiology  

Amy Throckmorton, PhD, Philadelphia, PA, USA 

IL19. Functionalized Tissue Engineered Patches for Pediatric Surgical 

Reconstructions  

Brad Keller, MD, Louisville, KY, USA, 

IL20. Translating Technology into Clinical Practice: a Brazilian Pediatric 

Ventricular Assist Device Development 

Idágene Cestari, PhD, Sao Paolo, Brazil 

IL21. Advances in Heart Valve Bioengineering with Special Emphasis on 

Scaling 

Lakshmi P. Dasi, PhD, Denver, CO, USA 

IL22. Computational Fluid Dynamics in Congenital Aortic Valve Disease 

Giovanni Battista Luciani, MD, Verona, Italy 

IL23. Progress in Computational Modeling of Neonatal Cardiopulmonary 

Bypass Hemodynamics with Detailed Circle of Willis Anatomy 

Kerem Pekkan, PhD, Pittsburgh, PA, USA 

 

10:00 – 11:00am Coffee Break/Exhibits/Posters 

 

11:00 – Noon  Key Note Lecture #2   

Individualized Strategy for HLHS: Norwood/Sano, Norwood/BT 

Shunt or Hybrid? 

Emile Bacha, MD, FACS, Calvin F. Barber Professor of Surgery, Chief, 

Division of Cardiothoracic Surgery, New York-Presbyterian/Columbia 

University Medical Center, Director, Pediatric Cardiac Surgery, Morgan 

Stanley Children's Hospital, New York, NY, USA 

Introduction: Paul J. Chai, MD, New York, NY, USA 

 

Noon – 1:00pm Lunch Break 
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1:00 – 3:00pm PARALLEL SESSIONS 

 

1:00 - 3: 00pm  PLENARY SESSION #5: 

VAD & ECLS (20 min Each) 

Moderators: Atıf Akçevin, MD, Istanbul, Turkey and Emre Belli, MD, 

Paris, France  

IL24. Is It Time to Go Back to Pulsatile Flow: Consequences of Non-

Pulsatile and Pulsatile Flow in Cardiopulmonary Bypass and 

Mechanical Circulatory Support Devices? 

Jack G. Copeland, MD, San Diego, CA, USA 

IL25. Rehabilitation after VAD: Role of Ancillary Staff 

Rebecca Hoffritz, PT, DPT, Meghan Burkhardt, MS, OTR (L), Meredith 

McDonaugh, MS, CCLS IV, Philadelphia, PA, USA 

IL26. Extracorporeal Life Support for Low Flow Applications ECLS Set 2.8 

- First Standardized Solution 

Thomas Markmann, MBA, Rastatt, Germany 

IL27. Cost Effective Usage of Hollow Fiber Membrane Oxygenators in 

Extracorporeal Membrane Oxygenation in Infants  

Atıf Akçevin, MD, Istanbul, Turkey 

IL28. Extracorporeal Circulation: Ten-year Practices in China  

Wei Wang, MD, PhD, Shanghai, China 

Slide Presentation (selected from Abstracts) 

S1. Monitoring Cerebral and Somatic NIRS Values (Renal and Hepatic) 

during Cardiac Surgery in Neonates and Infants 

Tijen Alkan-Bozkaya
1
, Tuğrul Örmeci

2
, Cihangir Ersoy

1
, Arda Özyüksel

1
, 

Burak Arkan
1
, Akif Ündar

3
. Atıf Akçevin

1
, Halil Türkoğlu

1
, Istanbul 

Medipol University, Dept. of Cardiovascular Surgery
1
 and Radiology

2
, 

Istanbul, TURKEY, and Penn State University, Children’s Hospital, 

Hershey, PA, USA
3
 

3:00pm – 3:30pm Coffee Break/Exhibits/Posters/Wet-Labs 
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3:45 – 6:45pm  WET-LABS  

Moderators: Talya Frey, CCP, Philadelphia, PA, USA, David Palanzo, 

CCP, Hershey, PA, USA and Akif Ündar, PhD, Hershey, PA, USA 

Hands-On Experience with the Newest Pediatric CPB/ECLS/MCS 

Systems 

Six wet-labs (30 min each) 

1:00 – 5:30pm PARALLEL SESSIONS 

1:00 - 5:30pm     ECLS Simulation & Cardiac ICU Rounds and Case Presentations: 

   (Advanced Registration is Required)   

Instructors: Roxanne Kirsch MD, Philadelphia, PA, USA, Stacie B. Peddy, 

MD, Philadelphia, PA, USA and Roberta L. Hales MHA, RRT-NPS, RN 

1:15- 3:00pm  Group #1:  

CICU Rounds (Advanced Registration is Required)   

Group #2:  

ECLS Simulation (Advanced Registration is Required)   

3:00 – 3:30pm Coffee Break/Exhibits/Posters/Wet-Labs 

3:30 - 5:30pm  Group# 3:  

CICU Rounds (Advanced Registration is Required)   

Group #4:  

ECLS Simulation (Advanced Registration is Required)   

ECLS Simulator Training:   

This session is for ICU physicians, CT surgeons, nurses, perfusionists and 

respiratory therapists involved in ECMO cannulation and management.   

The session will use simulation to facilitate ECPR hands on training.  In 

addition, this program focuses on techniques to train residents/fellows and 

nurses for a successful ECMO program as well as techniques to build a 

simulation program.  This program will run twice in the afternoon, and 

each session will incorporate a maximum of 20/session.  

Cardiac ICU Rounds and Case Presentations:  

These sessions will be held in the CICU at The Children’s Hospital of 

Philadelphia and lead by CICU staff.  Each session will be interactive 

during which active discussion from attendees is invited regarding all 

aspects of management and outcomes.  There will be 2 sessions, each of 

90 minutes duration, and space is restricted to 25 participants for each 

session.   The session will be suitable for all staff involved in the 

management of critically ill children with heart disease and will include a 

tour of the unit and discussion regarding resources and staffing 

requirements. 
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SATURDAY, MAY 31, 2014 

8:00 – 10:00am  PLENARY SESSION #6:  

Pediatric Perfusion: 2014 Update (20 min Each) 

Moderators: Haydon Dando, CCP, Sydney, Australia, Talya Frey, CCP, 

Philadelphia, PA, USA,  and Wei Wang, MD, PhD, Shanghai, China  

IL29. Evaluation of Commercially Available Neonatal & Pediatric ECLS 

Systems  

Akif Ündar, PhD, Hershey, PA, USA 

IL30. EVLP: How Our Institution Performs 

Gregg Roach, CCP, Philadelphia, PA, USA  

IL31. Use of Blood Products in Pediatric Cardiac Surgery 

Yves Durandy, MD, Le Plessis Robinson, France 

IL32. Evaluation of Different Diameter Arterial Tubing and Arterial 

Cannulae in Simulated Pediatric CPB Circuits 

Shigang Wang, MD, Hershey, PA, USA  

IL33. Developing a Culture of Safety 

Talya Frey, CCP, Philadelphia, PA, USA 

10:00 – 10:45am Coffee Break/Exhibits/Posters/Wet-Labs 

10:45 – 1:00pm REGULAR SLIDE PRESENTATIONS: 

Pediatric MCS, ECLS and CPB (Selected from Abstracts) 

Moderators: Yves Durandy, MD, Le Plessis Robinson, France,  

Wei Wang, MD, PhD, Shanghai, China and Linda Pauliks, MD, MPH, 

USA 

S2. Total Artificial Heart Bridge to Transplantation in Pediatric Patients, 

a 10 Year Follow-up in 3 Patients 

Hannah Copeland, Richard G Smith, Francisco Arabia, Jack G Copeland. 

Loma Linda University, Loma Linda, CA USA 

S3. Pediatric Centrifugal Assist Devices in a Developing Country: An 

Efficient and Economical Option to Treatment the Postcardiotomy 

Heart Failure - Institutional Experience 
*,‡

James Parada, MD, 
‡
Antonio Benita, MD, 

‡
Jorge Cervantes, MD and 

‡
Samuel Ramírez, MD. 

‡
Department of Pediatric Cardiac Surgery and 

Congenital Heart Malformations. National Institute of Cardiology Ignacio 

Chavez, Mexico City 

S4. Interhospital Transport with Extracorporeal Life Support in 

Pediatric Patients 

Jeng-Wei Chen, Yih-Sharng Chen, Nai-Hsin Chi, Chih-Hsien Wang, Shu-

Chien Huang. Cardiac Surgical Division, Surgical Department, National 

Taiwan University Hospital, Taipei, Taiwan 
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S5. Determination of a New Mutation in MT-ND1 gene of a Patient with 

Dextrocardia, Ventriculoarterial Discordance and Tricuspid Atresia 

Ali Can Hatemi
1,2

, Aris Çakiris
3
, Aybala Tongut

2
, Hakan Ceyran

2
, Duran 

Üstek
3
. 

1
Istanbul University, Institute of Cardiology, Department of 

Cardiovascular Surgery, 
2
Kartal Kosuyolu Education and Research 

Hospital, Department of Cardiovascular Surgery, Division of Pediatric 

Cardiovascular Surgery, 
3
Istanbul University, Institute for Experimental 

Medical Research, Department of Molecular Genetics, Istanbul, Turkey 

S6. Cardiopulmonary Bypass Priming Using Autologous Cord Blood in 

Neonates with Congenital Heart Disease 

Eun Seok Choi, MD, Woong-Han Kim, MD, Sungkyu Cho, MD, Woo Sung 

Jang, MD. Department of Thoracic and Cardiovascular Surgery, Seoul 

National University Children’s Hospital, Seoul National University 

College of Medicine, Seoul, Korea 

S7. A CPB Circuit and Protocol for Comparing Continuous and Pulsatile 

CPB in a Single Animal 
*†

Ryan Halter, PhD, 
†‡

Karen Moodie, DVM, 
†‡

Joseph DeSimone, MD, and 
‡
Mark Farrell. 

*
Thayer School of Engineering, 

†
Geisel School of Medicine, 

Dartmouth College, Hanover, NH, USA; and 
‡
Dartmouth-Hitchcock 

Medical Center, Lebanon, NH, USA 

S8. Myocardial Histology of Neonatal Piglets after Cardioplegic Protected 

Cardiac Arrest on Cardiopulmonary Bypass 

Tirilomis T, Bensch M, Waldmann-Beushausen R, Schoendube FA. Dept. 

for Thoracic, Cardiac, and Vascular Surgery, University of Goettingen, 

Goettingen, Germany 

S9. Blood-Surface Interaction and Aggregation of Serum Proteins during 

Extracorporeal Circulation with Phosphorylcholine-Coated Tubing 

Lines: S100A8/A9 is it the Trigger for Inflammation? 

Ali Can Hatemi
1
, Aris Çakiris

2
, Kadir Çeviker

1
, Neslihan Abacı

2
, Fulya 

Coşan
2
, Öznur Ağlar

2
, Hülya Azaklı

2
, Zeliha Ökten

2
, Erhan Kansız

1
, 

Duran Üstek
2
. 

1
Istanbul University, Institute of Cardiology, Department of 

Cardiovascular Surgery, 
2
Istanbul University, Institute for Experimental 

Medical Research, Department of Molecular Genetics, Istanbul, Turkey 

 

THURSDAY 8:00am - SATURDAY 1:00pm    
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Educational Credits 
 

The 10th International Conference has been approved for the following credits: 

 Physicians:    19.5 AMA PRA Category 1 Credit(s)TM  

 Perfusionists:  24.3 Category 1 CEU's 

 Nurses:  19.5 Category 1 CEU's 

 
ACCME Accreditation Statement 

The Children's Hospital of Philadelphia is accredited by the Accreditation Council for Continuing 

Medical Education (ACCME) to provide continuing medical education for physicians.   

 

AMA PRA Credit Designation Statement 

The Children's Hospital of Philadelphia designates this live activity for a maximum 19.5 AMA PRA 

Category 1 Credit(s).  Physicians should claim only the credit commensurate with the extent of 
their participation in the activity. 
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Keynote Lecture 2. Individualized Strategy for HLHS: Norwood/Sano, 
Norwood/BT Shunt or Hybrid? 
 

Emile Bacha, MD, FACS 

Calvin F. Barber Professor of Surgery, Chief, Division of Cardiothoracic Surgery, New York-
Presbyterian/Columbia University Medical Center, Director, Pediatric Cardiac Surgery, Morgan Stanley 
Children's Hospital, New York, NY, USA 

 

Abstract: 

Over the past decade, new variations on the "classic" first stage palliation (the Norwood/BT shunt) for 
patients with Hypoplastic Left Heart Syndrome have emerged and been vetted by the medical community. 
A "one size fits all" approach may not be adequate anymore.  

In this review, the optimal indications for the various palliative options (Norwood/BT shunt, Norwood/RV-
PA conduit, Hybrid Stage I with or without ductal stenting, heart transplantation) are reviewed from a 
standpoint of the initial anatomy and physiology of the patient, letting it guide clinical management. 
Current knowledge useful for decision-making is also reviewed as objectively as possible. 
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IL1. Diagnosis and Management of Myocarditis in Children 

Matthew J. O’Connor, MD 

Division of Cardiology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA 

 

Objective:  

To review current diagnostic testing available for myocarditis in children; to review the differential 
diagnosis of myocarditis in children; to review current management strategies for myocarditis in children, 
with a focus on recent developments in this area; and to briefly review the outcomes of myocarditis in 
children, again with a focus on recent outcome data in children. 

Methods:  

The scientific literature related to the diagnosis and management of myocarditis in children will be 
reviewed to select the most pertinent information.  Although general diagnostic and management 
concepts will be discussed, attention will be paid to recently published studies. 

Results:  

Myocarditis is an uncommon diagnosis in children, but is seen frequently in previously healthy children 
presenting with symptomatic ventricular dysfunction.  The diagnosis is largely made on the basis of 
clinical, laboratory, and echocardiographic findings, but cardiac MRI is assuming a greater role in the 
diagnosis in some centers.  Cardiac catheterization with endomyocardial biopsy is utilized when the 
diagnosis remains uncertain.  Myocarditis is generally treated supportively, with severe cases frequently 
needing mechanical circulatory support.  The prognosis is variable and depends on a number of factors 
such as age, severity of clinical presentation, and the etiology. 

Conclusions:  

Myocarditis in children has many possible etiologies; however, most cases are treated similarly with 
mechanical support frequently employed as a short-term method of assisting the circulation.  Cardiac MRI 
is assuming a greater role in the diagnosis.  Outcomes are variable and depend on a number of complex 
factors. 
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IL2. The Use of VAD Support in Children: the State of the Art 

Christopher E. Mascio 

Pediatric Cardiothoracic Surgery, Department of Surgery, The Children’s Hospital of Philadelphia, 
Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 

 

Abstract: 

The first implantation of a ventricular assist device (VAD) was done in 1963 in an adult.  Pediatric VADs 
were made available in North America in 2000 and implantation of these devices as bridge to transplant 
significantly increased with widespread use of the Berlin Heart EXCOR device. Because both neonatal 
and infant cardiac surgical survival and pediatric admissions for heart failure have increased, the need for 
pediatric mechanical support as a bridge to recovery or transplant is expected to continue.   
 
An initial step is to determine the type of support necessary.  Patients arresting or requiring 
cardiopulmonary support are supported with extracorporeal membrane oxygenation (ECMO).  Once there 
is pulmonary recovery in those on ECMO; and, for patients only requiring cardiac support there are short-
term (<2 weeks) support options and long-term (>2 weeks) support options.  Timing of implantation -
awaiting end organ recovery or proceeding to prevent worsening of end organ function - is critical.  
 
Short-term options include the RotaFlow, PediMag, and Tandem Heart.  All three are continuous flow, 
extracorporeal devices.  None permit ambulation and the Tandem Heart is placed percutaneously and is 
used in larger patients (>40 kg, BSA >1.3).  Long term-options include the Berlin Heart EXCOR, Thoratec 
PVAD/IVAD, SynCardia Total Artificial Heart, HeartWare HVAD, and the HeartMate II.  The Berlin Heart is 
the only long-term FDA approved VAD for neonates and infants.  It has five different pump sizes and can 
support older children/adolescents also. The Total Artificial Heart eliminates concern over residual 
anatomic lesions that present challenges with the use of other devices.  The HeartWare device is very 
small and is implanted in the pericardial space.  The HeartMate II is the most common VAD used in adults 
and is appropriate for some adolescents. 
 
There are perioperative concerns in caring for this patient population that affect the entire team – 
anesthesiology, surgery, and intensive care.  Proper management of right heart failure can prevent the 
need for biventricular support.  Cannulation sites are important for optimal filling and function of the 
device.  Bleeding, stroke and infection are postoperative concerns with all devices. 
 
Pediatric mechanical support continues to evolve.  Outcomes are expected to improve with advances in 
perioperative management and device design.  
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Myths and truths of perfusion modes during acute and chronic mechanical circulatory support are 
summarized in Table 1 and Table 2, respectively (1). 

 Table 1. Myths and truths of pulsatile perfusion during cardiopulmonary bypass (CPB). 

Myths Truths 

Pulse pressure is adequate for precise 
quantification of different perfusion modes or 
different types of pulsatile perfusion. 

Generation of pulsatile flow depends on energy gradient 
rather than a pressure gradient. The energy equivalent 
pressure formula is the best tool to quantify pressure-flow 
waveforms because it contains both pressure and pump 
flow waveforms. 

If the pulse pressures are similar between 
two pulsatile systems, then the hemodynamic 
energy levels are also similar. 

With the identical pulse pressures, a physiologic pulsatile 
pump generates about 100% more hemodynamic energy 
than a pulsatile roller pump because of the physiologic 
morphology (shape and size) of the pressure-flow 
waveforms. 

All pulsatile roller pumps generate adequate 
hemodynamic energy compared to 
nonpulsatile roller pumps. 

Some pulsatile roller pumps do not generate any more 
hemodynamic energy when compared to a nonpulsatile 
roller pump. Therefore, the quantification of pressure flow 
waveforms is a must, not an option. 

Membrane oxygenators are not important in 
producing the pulsatile pressure-flow 
waveforms. 

Hollow-fiber membrane oxygenators are better than flat 
sheet type membrane oxygenators but the structure of 
hollow fibers is also an important factor. Pressure-drops 
caused by oxygenators must be compared. A lower 
pressure drop equals better pulsatility. 

An aortic cannula has no impact on 
pulsatility. 

Geometry of the aortic cannula has a direct impact on the 
quality of the pulsatility. The shorter the tip of the 
cannula, the better the pulsatility. 

There is no difference in vital organ blood 
flow between perfusion modes. 

Cerebral, renal, and myocardial blood flows recover 
significantly better with pulsatile perfusion. 

There is no difference in systemic 
inflammation between perfusion modes. 

Pulsatile perfusion reduces the endothelial damage and 
suppresses the activation of complements, neutrophils, 
and the production of cytokines. 

Duration of support is not important during 
pulsatile perfusion. Even if pulsatile flow is 
used for only a few minutes, it is possible to 
see the benefits immediately. 

If the duration of aortic cross-clamping exceeds 45 min, 
and only pulsatile flow is used, then it is possible to see 
the benefits. If pulsatile flow is used for 15 min out of 90 
min of CPB, then it is not possible to see any difference 
in vital organ recovery between perfusion modes. 

There is no difference in morbidity and 
mortality between perfusion modes. 

If adequate pulsatility is achieved, patients do better with 
pulsatile perfusion. In particular, high-risk patients benefit 
from pulsatile perfusion more than low-risk patients. 
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Myths (Cont.) Truths (Cont.) 

Pulsatile flow prevents morbidity and 
mortality compared to the conventional 
nonpulsatile perfusion. 

Pulsatile perfusion only minimizes the morbidity and 
mortality; it does not eliminate the adverse effects of 
CPB. 

Pulsatile flow produces more circuit pressure 
and hemolysis compared to the nonpulsatile 
perfusion. 

Circuit pressures and blood trauma are similar in both 
systems. 

If there is a problem during pulsatile CPB, 
there is no way to change the perfusion 
mode. 

It takes less than 3 s to change the perfusion mode from 
pulsatile to nonpulsatile or vice versa. 

Institutional Review Board (IRB) approval is 
required to use pulsatile flow during CPB. 

IRB approval is not required to use pulsatile flow. 

Significant cost is associated with the 
pulsatile pumps. 

The same pump systems are used for pulsatile and 
nonpulsatile perfusion. There is absolutely no extra cost. 

 

Table 2. Myths and truths of pulsatile perfusion during chronic cardiac support. 

Myths Truths 

Pulse pressure is adequate for precise 
quantification of different perfusion modes 
during chronic mechanical circulatory support. 

If both pressure and pump flow waveforms are available, 
then the energy equivalent pressure formula should be 
used, otherwise the use of pulse power index, and/or 
pulsatility index is recommended. 

Nonpulsatile perfusion does not have any 
negative effects on capillary perfusion during 
chronic support, because pulsatility does not 
exist in capillaries. 

Pulsatility does exist in capillaries. Pulsatile flow 
significantly improves the velocity of erythrocytes in the 
capillaries and increases the number of perfused 
capillaries. 

Nonpulsatile VADs (axial flow or centrifugal) 
produce 100% nonpulsatile pressure-flow 
waveforms. 

Although the pump flow is 100% nonpulsatile, arterial 
waveforms have some degree of pulsatility because the 
natural heart is also pumping. If the patient’s heart 
recovers well, then it is possible to achieve near 
physiologic arterial pressure waveforms. 

Nonpulsatile and pulsatile VADs generate the 
same degree of systemic inflammation. 

It is shown that a pulsatile VAD causes less systemic 
inflammation when compared to an axial flow pump. 

 

Reference:  

1. Undar A. Myths and truths of pulsatile and nonpulsatile perfusion during acute and chronic cardiac 
support. Artif Organs. 2004 May;28(5):439-43. 
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IL5. VADs and Outcomes Post Transplantation: What We Know and What We 
Don’t Know? 

Pirooz Eghtesady, MD, PhD 

Div. of Cardiothoracic Surgery, St. Louis Children's Hospital, St. Louis, MO, USA 

 

Abstract:  

Increasingly, ventricular assist devices (VAD) are being used in children as a bridge to transplantation 
because of improved wait-list survival outcomes. Less is known about the impact of device therapy on 
outcomes post transplantation.  

With the application of some of the adult devices, bridge to decision is also now being increasingly used 
as part of the decision algorithm for pediatric patients that may or may not be candidates for heart 
transplantation. The technology has also brought forth reconsideration of prior contraindications (e.g., 
elevated pulmonary vascular resistance) as well as discussions regarding implications on outcomes 
following transplantation (e.g., impact on sensitization and risk of rejection). Lastly, success with bridging 
patients has resulted in some major challenges or questions (e.g., Should a patient with renal failure or 
multiple organ dysfunctions be resuscitated or considered a candidate? What degree of neurologic injury 
while on support is inconsistent with continued listing? Etc.) to be raised for pediatric patients previously 
not encountered.  

The presentation will discuss these issues and results from ongoing investigations related to EXCOR 
Berlin Heart application as well as the newer devices (e.g., HeartWare HVAD), in their off-label 
application, as they related to VAD therapy and post-transplant outcomes. 
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Objective: Apolipoprotein E (apoE) plays a critical role in modulating the response to neurological injury 
after stress. Therefore, apoE level may prove to be an important biomarker in the pathophysiology of 
cerebral injury after cardiopulmonary bypass (CPB) in children. The objectives of our study was a) to 
determine the variation of apoE levels after CPB in children, b) to compare the effects of different modes 
of CPB (pulsatile versus nonpulsatile) on apoE levels after CPB. 

Methods: After Institutional Review Board approval, plasma samples were collected from 40 pediatric 
patients who underwent heart surgery. Study population was divided into 2 groups based on the mode of 
CPB. Half of the patients received non-pulsatile flow and the other half underwent pulsatile flow during 
CPB. Plasma samples were collected at three time points: 1. at baseline prior to surgery (after the arterial 
line is connected but prior to incision (T1), 2. one hour after CPB (T2), 3. twenty four hours after CPB (T3). 

Results: ApoE levels increased significantly at 24 hours after CPB in both groups, and non-pulsatile 
mode was associated with significantly higher apoE levels at time points T1 (baseline) and T3 (24 hour 
after CPB) (Figure 1). As the distribution of the apoE levels were skewed, a logarithmic transformation 
was applied for comparison of apoE levels between the 2 groups. For the time point T1:  ratio of 
geometric means was 0.70; 95% CI: (0.52, 0.95); p=0.02, T2: 0.89; 95% CI: (0.63, 1.25); p=0.49, and T3: 
0.70; 95% CI: (0.53, 0.93); p=0.02. 

Conclusions: 

Our observations indicate that apoE levels increase significantly following CPB and mode of CPB may 
affect apoE levels after CPB. An improved understanding of these mechanisms, as well as the translation 
of such knowledge into the development of new techniques may improve the clinical outcome after CPB.  

 

Figure 1. Apolipoprotein E levels at different time points following CPB in children.  
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IL11. Alternative Transcatheter Procedures to Surgery in the Treatment of 
Congenital Heart Disease 

Ender Odemis 

Department of Pediatric Cardiology, Istanbul Mehmet Akif Ersoy Hospital, Istanbul, TURKEY 

 

Abstract:  

Surgical techniques, cardiopulmonary bypass strategies and intensive care modalities improved since last 
decades in the treatment of congenital heart disease (CHD). However mortality and morbidity are still a 
concern in patients with high risk groups such as neonates, reoperations, necessity of long 
cardiopulmonary bypass etc.  

In the other hand, transcatheter management of CHD has been a widely accepted policy. Since the last 
quarter of 20th century starting with balloon valvuloplasty of pulmonary valve now reached to 
percutaneous pulmonary valve implantation stage. Transcatheter closure of septal defects and patent 
ductus arteriosus are accepted first choice in selected cases. Many sort of percutaneous interventions in 
neonates including perforation of atretic valves, and stenting of ductus arteriosus are also alternative to 
surgery in order to prevent the children from undesired effects of cardiopulmonary bypass.  

Finally as a proof of surgery and intervention relationship; in increasing number of hybrid procedures 
have been performing all over world.   
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IL12. The Utilization of ECPR in the Pediatric Population 

Javier J. Lasa 

Division of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, University of 
Pennsylvania School of Medicine, Philadelphia, PA, USA 

 

Abstract:  

The evolution of extracorporeal cardiopulmonary resuscitation (ECPR) from its origins in cardiopulmonary 
bypass (CPB) to the current functionality beyond the operating theatre suggests new and exciting 
frontiers for extracorporeal support.   

Implementing an effective ECPR program in the pediatric population requires a substantial commitment of 
both financial and personnel resources directed in a singular effort to rescue patients from failed 
conventional CPR.  In addition, this effort requires a multidisciplinary team approach with skilled 
personnel that include perfusion specialists, general/cardiac surgeons, respiratory therapists, and critical 
care nurses and physicians. Yet limitations in resource allocation and patient selection bias remain 
obstacles to further progress. Additional challenges include our limited understanding of center specific 
variables, such as volume of cases, and their impact on outcomes.   

During this presentation, ECPR utilization will be explored while exploring its origins and trajectory over 
the past 30 years. 
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Objective:  

The new Medos Deltastream DP3 system includes a diagonal pump and a hollow membrane oxygenator 
that provides pediatric extracorporeal life support (ECLS). DP3 has been used in Europe and also has 
different modes including pulsatility. Our ECLS system has been switched from Medos Deltastream DP2 
to DP3 since November, 2012. The aim of this study is to investigate the efficiency of this new system. 

Methods:  

Between March 2011 and February 2014, the Medos Deltastream ECLS system was used in 55 patients. 
The system was DP2 in 25 patients before November 2012 and DP3 in 30 patients since then. The mean 
age was 15.6 months and mean ECLS duration was 3 days in the last 30 patients. Eleven of patients 
were newborns. E-CPR was needed in 9 of patients. Non-pulsatile flow and preload control mode (P1 
control mode) was used in most patients. P1 (between the patient and the pump head), P2 (pre-
oxygenator) and P3 (post-oxygenator) pressures were followed up in all patients. 

Results:  

In DP2 group, 9 of 25 patients (36%) could be weaned off and 5 patients (20%) were discharged. In DP3 
group, 26 of 30 patients (86%) could be weaned off and 15 patients (50%) were discharged. Bleeding and 
renal failure were the most common complications during ECMO support. Hemodynamic stability, lactate 
levels and urine output were better in DP3 patients. 

Conclusions:  

DP3 success is still in progress in comparison with DP2. DP3 provides better hemodynamic stability 
during support. Also, using proper modes increase efficiency of support. 
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Objective:  The treatment of single ventricle (SV) anomalies is a formidable and costly challenge for 
clinical teams caring for patients with congenital heart disease (CHD). Despite having a low incidence, 
these patients utilize healthcare resources disproportionate to their numbers. Advances in pharmacologic 
or novel surgical treatments have reached a plateau, resulting in the need for alternative therapeutic 
options for SV patients. There is now a growing interest in the use of mechanical assistance as a bridge-
to-transplant or treatment strategy. By introducing a pressure boost to the pulmonary circulation 
analogous to the native right ventricle, the deleterious characteristics of the Fontan may very well be 
reversed, and the circulation will revert more to normal physiologic levels. 

Methods:  To address this unmet need, we are developing a mechanical blood pump specifically 
designed to increase pressure in the great veins would augment flow through the lungs and reverse the 
Fontan paradox in adolescent and adult patients with ailing single ventricles. We have generated 
significant preliminary data through numerical modeling, prototype hydraulic evaluation, hemolysis testing, 
and laser flow measurements to demonstrate the feasibility of our new device.   

Results:  The pump prototypes were able to generate pressures of 2-40 mmHg for flow rates of 0.5-4 
L/min at rotational speeds of 1000-9000 RPM. Comparisons of the experimental performance data to the 
numerical predictions demonstrated acceptable agreements within 8-24%. Hemolysis studies revealed 
average and maximum N.I.H levels were measured to be 0.0056 g/100L and 0.0064 g/100L, respectively, 
for repeated experiments. Retrograde flow was neither observed, nor measured, from the cavopulmonary 
junction into the superior vena cava; stereo-laser flow measurements, however, indicated the presence of 
a threshold where retrograde flow could occur. We measured an enhancement of forward flow into the 
cavopulmonary junction, reduction in the pressure of the inferior vena cava, and only minimally increased 
pulmonary arterial pressure under conditions of mechanical pump support.  

Conclusions: Considerable progress has been made in the development of a uniquely designed, new 
therapeutic device for patients with dysfunctional SV physiology. It will serve as a bridge-to-recovery, 
bridge-to-transplant, or bridge-to-hemodynamic stability for Fontan patients. 

 

Fig. 1: Intravascular Blood Pump for Single Ventricle Patients. Design consists of a catheter, 
protective cage of twisted filaments, impeller blade set, and diffuser blade set: A) The device consists of a 
protective sheath with cage filaments, a rotating shaft and catheter, an impeller blades, diffuser region at 
the outlet. B) Position of the cavopulmonary assist device in the inferior vena cava (IVC). It is designed to 
augment pressure and thus flow in IVC and subsequently drive blood into the left and right pulmonary 
arteries while supporting the incoming flow from the superior vena cava (SVC).  

A. B. 
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Objective: The generation of tissue engineered patches for congenital cardiac repair requires scalable 
and implantable 3D biomaterials that include cardiomyocytes (CM) and non-CM. Pre-clinical approaches 
have generated working in vitro engineered cardiac tissues (ECTs) from multiple cell sources and a range 
of 3D formulations. One limitation in generating clinical scale ECTs has been the lack of availability of 
large numbers of functional CM from somatic cell sources. We are now adapting our ECT approach to 
incorporate human induced pluripotent stem cells derived CM (h-iPS-CM) and non-CM due to the ability 
to generate large numbers of functioning CM and non-CM. Initial constructs are designed for small 
preclinical models with the goal of scale-up to large animals. 

Methods: h-iPS-CM are stimulated in vitro to generate both CM and non-CM lineages and sorted by CM 
(VCAM1) and non-CM surface markers. We generate ECTs using h-iPS-CM (CiRA 836B6) embedded 
into a collagen I and Matrigel construct adapted from our previous methods for chick embryo (Tobita K, et 
al. 2006) and rat embryo (Fujimoto K., et al. 2011) cells. To facilitate CM maturation, we embed a custom 
porous electrical sensor and paced constructs at 3Hz. Constructs showed spontaneous contraction by 
day 5. Constructs are harvested after day 10 for immunohistochemistry to quantify CM and non-CM 
distribution and maturation, proliferation, and for force-length and force-frequency analysis. Parallel 
experiments are underway using h-iPS-CM and non-CM in thermal responsive shallow 3D culture plates 
to generate cell sheets. 

Results: ECTs derived from h-iPS-CM and chronically paced at 3Hz display comparable maturation to 
ECTs derived from embryonic chick and rat CM (Figure 1). Despite published evidence that h-iPS-CM 
display delayed functional maturation, we noted substantial force generation and response to increase 
pacing rate similar to embryonic chick CM (Figure 2). 

 

 

 

 

 

 

 

Conclusions: h-iPS-CM can be incorporated into functional ECTs that generate substantial force and 
may be scalable to large animal models and then clinical trials.  

Figure 1. Representative h-iPS-CM derived 

ECT visualized suspended in a Flexcell Tissue 

Train plate. This ECT does not contain an 

embedded PES pacing sensor. 

Figure 2. Functional comparison of ECTs generated with 

chick embryo and h-iPS-CM. Force-frequency relations 

quantify force generation in response to increased beat rate 

and reflect maturational ability to release and restore Ca
2+

. 

Chick embryo and h-iPS ECT showed increased passive force 

and reduced active force as beat rate increase from 120 to 240 

bpm consistent with immature Ca
2+

 handling. 
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Objective:  

Our goal is to create a multidisciplinary team focused on pediatric circulatory assist devices considering 
the social and economic context of the patient population and medical institutions involved in future 
device implantation and technology dissemination. 

Methods:  

Research groups with expertise in cardiovascular bioengineering, material sciences, computational fluid 
dynamics and pediatric surgery joined to produce and test a pediatric VAD and ECMO system. 
Polyurethane pulsatile pumps of 15 and 30 mL ejection volumes fitted with biological valves and cannulas 
were developed. A pneumatic driver unit previously developed for adult patients VAD was adjusted to 
pediatric assistance. In vitro studies included hemolysis evaluation and flow velocity fields and shear 
stress determination using particle image velocimetry. Acute studies were performed in piglets (n=14, 10-
12 Kg body weight, 2 hours under biventricular assistance). Pre-clinical device performance was 
assessed in juvenile sheep with an actively contracting ventricle (n=9, 20-30 Kg body weight, 30 days end 
point) undergoing LV assistance. 

Results:  

Acute biventricular assistance resulted in stable cardiac index >3 L/min/m2 in all animals. No clinical 
indicators of embolization or relevant pathology findings were observed in the chronic experiments. 
Plasma free hemoglobin remained within acceptable levels during assistance. At study termination VAD 
blood contacting surfaces showed no significant thrombus or fibrin formation except around the annulus 
of the valves. 

Conclusions:  

The strategy utilized resulted in an efficient resource utilization and timely development of a pediatric VAD 
suitable for clinical evaluation. Technology transfer to local industries may lower manufacturing costs 
contributing to pediatric VAD use with costs in accordance with national healthcare expenditures. 
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Objective:  

Are adult diagnostic criteria to characterize severity of valve disease applicable in pediatric patients? The 
objective of this study is to introduce physical laws that govern the scaling of wasted energy from 
pediatric valvular conditions and propose a new clinical index to gauge severity. 

Methods:  

Dimensional analysis of wasted energy reveals a new index, Cardiovascular Efficiency Index (CEI), that 
physically represents the energy ejection fraction of the pumping ventricle (i.e. power generated 
normalized by power ejected) indexed to patient body surface area. CEI for left-sided disease can be 
calculated using cuff pressure combined with simultaneous ultrasound measurement of pressure gradient. 
However, right-sided conditions require catheterization for power calculations. In-vitro studies were 
conducted using varying degrees of stenotic aortic valves placed in a left-heart simulator subjected to 
varying hypertension levels (moderate – 140/100 and severe 160/120). This model represents the most 
complex concomitant pressure loaded condition. Instantaneous pressure and flow measurements yielded 
CEI for each singular as well as concomitant condition for adult (high cardiac output) as well as pediatric 
(low cardiac output) conditions.  

Results:  

Results show that CEI and raw power increased significantly when assessing severity of both singular 
and concomitant disease cases. CEI reflected a marked decrease in energy efficiency in pediatric cases 
compared to adult cases (see Figure 1) for the same level of singular as well as combined pathosis. We 
also demonstrate that CEI captures the total severity in concomitant scenarios better than raw power 
output.  

Conclusions:  

The results of this study suggest that standard indices of severity for adult do not translate to pediatric 
patients due to the nature of energy scaling with respect to cardiac output and patient body surface area. 
CEI may be the appropriate clinical index to quantify severity of both left and right-sided energy wasting 
lesions.  

 

Figure 1. Cardiovascular efficiency index (CEI) for varying levels of pressure overloading for 
adult conditions (A) and pediatric conditions (B). 
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IL22. Computational Fluid Dynamics in Congenital Aortic Valve Disease 

Giovanni Battista Luciani, MD 

Division of Cardiac Surgery, University of Verona, Verona, Italy 

 

Abstract: 

Computational fluid dynamics (CFD) using geometric meshes derived from in vivo advanced imaging 
techniques (MRI, CT) and finite element mathematical analysis has been applied to define 
pathophysiology of congenital malformations for quite some time. Whereas CFD has been instrumental in 
selecting the best surgical strategy, from a bioengineering point of view, for staged palliation of single 
ventricle lesions, more recently it has been employed to investigate the unique interaction between aortic 
valve structure and aortic pathology in the most common congenital heart defect world-wide, namely 
bicuspid aortic valve (BAV) disease.  

Given the newly recognized prevalence of BAV in healthy Caucasian population ranges between 1-2%, 
but it is perhaps as high as 5%, interest for clinic-pathological evolution of what is the most common 
anatomic variant from normal tricuspid aortic valve has dramatically grown. In particular, necessity to 
distinguish amongst BAV subtypes and to characterize the long-term impact of normally functioning BAV 
on ascending aortic status has gained possibly greater importance than definition of aortic pathology in 
BAV patients with dysfunctional valves requiring surgery. In both populations, i.e. healthy subjects with 
normally functioning BAV and patients with diseased BAV or normal BAV but aneurysmal aorta, late 
clinical follow-up is impractical and natural history events may require decades to present. Therefore, 
translational research tools, such as CFD, with the unique ability to simulate the individual anatomy and 
pathophysiology of BAV may allow patient-specific prediction of very long-term evolution congenital aortic 
valve and ascending aortic disease. 
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Objective: This study aims to model and compare the blood flow performance of aortic cannulation 
configurations during neonatal congenital cardiopulmonary bypass. Cannula configuration is known to 
influence multi-organ perfusion significantly [1, 2], but this effect was not clear in computational models 
that focus only the aortic arch region [2]. Therefore we model the main brain arteries including the circle 
of Willis (CoW) and the Basal Ganglia, which are important due to their role in blood, flow re-distribution, 
backflow, perfusion and their significance intraoperative monitoring systems (such as NIRS). 

Methods: The great arteries of cerebral circulation are reconstructed from patient MRI data. Aortic arch 
model has been verified in our previous studies. Inlet of cannula is assigned as velocity boundary 
condition, while all outlets are assigned as resistance boundary conditions. 3D Flow simulations in the 
aortic arch model are performed at a mean blood flow rate of 500 ml/min (Re 2150). A commercial flow 
solver Ansys Fluent 15.0 is used. 

Results: Flow dynamics of common arch CPB configurations are simulated; hemolysis, blood residence 
times and wall shear stress distributions are reported. Cerebral perfusion is computed in cases with 
missing anterior or posterior communicating artery. The cerebral and systemic flow distributions are 
calculated and compared with previous simulations and found to be different. 

Conclusions: Inclusion of 3D CoW is essential to predict the accurate head-neck blood perfusion and 
therefore detrimental in deciding the neonatal aortic cannulation strategy pre-operatively.  

 
Figure 1: A cannula configuration in neonatal arch reconstruction (left) [2]. Pressure (mmHg) distributions 
in neonatal aortic arch integrated with with cerebral arteries including CoW region. Flow splits are 
computed to be (%): 57.3 for DA, 6.7 for RPA, 6.9 for LPA, 12.7 for LSA, 4.4 for RMCA, 4.5 for LMCA, 2.3 
for RPCA, 2.5 for LPCA, 0.9 for RACA, 1.8 for LACA (right). 

References: 

[1] T. A. S. Kaufmann et al, The Impact of Aortic/Subclavian Outflow Cannulation for Cardiopulmonary 
Bypass and Cardiac Support: A Computational Fluid Dynamics Study, Artificial Organs, 33(9), 2009 
[2] D. de Zelicourt et al, Cannulation Strategy for Aortic Arch Reconstruction Using Deep Hypothermic 
Circulatory Arrest, Ann. Thorac. Surg, 96, 2012 
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Abstract:  

In this talk, I review the question of pulsatile versus continuous flow support in cardiopulmonary bypass 
and mechanical circulatory support devices.  Evolutionary, scientific, and clinical evidence is considered.  
Continuous flow cardiopulmonary bypass has been perfected and modified and results have been 
spectacular, but simultaneously, dangers and limitations have been recognized.  Hypothermia, limited 
exposure or no exposure to cardiopulmonary bypass, and improved disposable equipment and methods 
have helped.  Still, cardiopulmonary bypass is associated with complications that limit periods of support, 
injure organs, and result in post-bypass vasoplegia particularly in sicker patients.  Work by some 
investigators, especially in children, documents superiority of pulsatile flow.    

Current clinical results with continuous flow LVADs will be reviewed including some problems that seem 
to be related to lack of a pulse: gastrointestinal bleeding, aortic insufficiency, and stroke.  Some other 
problems are related to the device itself: acquired Von Willebrand’s syndrome and pump hemolysis and 
thrombosis.  GI bleeding with pulsatile VADs is 10 times less.  Aortic insufficiency is less common.  Von 
Willebrand’s syndrome is not seen and stroke rates with some pulsatile devices have been significantly 
less. 

Modern surgical methods and technology could provide us with the opportunity to use pulsatile flow in 
cardiopulmonary bypass.  Manufacturers of durable support devices may lead the way since they are 
advertising pulsatility in next generation devices.  And evidence suggests that having a pulse is good.  My 
conclusion is that investigation of pulsatile flow in cardiopulmonary bypass and mechanical circulatory 
support is warranted and may lead to paradigm shifts away from continuous flow. 
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Background:   

As an institution that provides extracorporeal and VAD support, it is important that the interdisciplinary 
team work together to provide the patients with optimal services, which normalize their experience and 
maintain or enhance their functional and/or developmental skills. Once on extracorporeal life support, the 
physical and occupational therapists will work with the patient to maximize strength, joint integrity, 
development skills, functional mobility, and activities of daily living.  Starting with early progressive 
mobilization, the interdisciplinary team works together to provide optimal care of the patient on 
extracorporeal support, acknowledging the family also has special needs requiring specific attention. The 
Child Life Specialist interacts with the patient and the families, to support, educate and normalize the 
hospital experience during this very stressful process. 

Results: 

The VAD Program at the Children’s Hospital of Philadelphia is made up of an interdisciplinary team that 
assists patients and their families as they adjust to both the medical and psychological impact of the 
circulatory support.  This team includes the physician and nursing staff in conjunction with physical 
therapy, occupational therapy, child life, psychology, social work, music and art therapy, speech and 
nutrition.  All services are vital in optimizing the patients’ physical, psychological, and spiritual well being 
so they are able to thrive once transplantation has occurred. 

Once the patient has the mechanical device implanted, it is the role of both Physical and Occupational 
Therapy to provide services, which will maximize the patient’s functional mobility and independence.  
Both Physical and Occupational Therapists identify the need for adaptive equipment, splinting or 
techniques to promote acquisition of developmental milestones and/or the prevention of decreased range 
of motion and the incidence of contractures.  Physical Therapy and Occupational Therapy often work 
together, initially, to provide early mobilization and progressive mobility as evidence shows a decrease in 
muscular atrophy, decrease in days spent in the intensive care unit, and an increase in overall functional 
gains.  Physical Therapists will assist patients in regaining functional mobility, balance, range of motion, 
strength and endurance to activity.  Often after VAD placement, the patient becomes deconditioned, their 
posture is impacted, and due to how the device is implanted, their balance may be impacted as device 
weight, drive lines, and cannulas now impact their thoracic cage.  Occupational Therapists specialize in 
fine motor and visual motor function.  They will assess the patient’s ability to engage in their occupations 
(accept care, self-calming skills, caregiver bonding, developmental play, self-feeding, ADLs, school, work, 
and leisure tasks) and address what may hinder their performance. 

During mechanical support, the patient and family have special needs requiring specific attention.  The 
goal of the child life specialist is to meet the emotional, social and developmental needs of hospitalized 
children.  Specifically for the patient on circulatory support, the child life specialist provides coping 
mechanisms and education for the patient and their siblings.  The collective goals of the child life 
specialist for the patient on VAD support are to increase familiarity with the device, encourage mastery 
and coping skills, facilitate expression of feelings, minimize the impact of living with circulatory support, 
and to also educate siblings about the device.  The child needs to be told why the device is being placed 
and the importance of the device in their course of treatment.  Pictures and age-appropriate materials are 
used to explain how the device looks and works.  Ideally, the optimal timing for preparing the patient is 
before the implantation of the device if not operatively placed post cardiac arrest. It is critical that the child 
life specialist is involved in the patients care as they begin to emerge from sedation, so they can partner 
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with the family and the medical staff to provide developmentally appropriate support and education.  All of 
this is done to attenuate fears and to increase understanding and compliance of the device.   

Conclusions:  

Evidence demonstrates the importance of early mobilization and progressive mobility to decrease muscle 
atrophy, length of ICU stay and increase functional gains. Emphasis on treating and supporting the 
patient and caregivers pre- and post VAD placement in preparation for transplantation or destination 
therapy is vital.  The interdisciplinary staff of The Cardiac Center is part of a highly effective ancillary 
system that provides excellent support to both the patients and their families during this intense 
hospitalization. 
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Abstract: 

The development of ROTASSIST 2.8 – a new generation of centrifugal pump with sophisticated 
integrated pressure technology – designated for low flow applications, forms the basis for the ECLS Set 
2.8. This new standardized circuit for extracorporeal life support is suitable for all indications where 
cardiac and/or respiratory support with flow rates up to 2.8 l/min is needed. 
 
Another main component of the ECLS Set 2.8 is the advanced version of the QUADROX-iD Pediatric 
oxygenator  which also incorporates integrated and non-invasive pressure measurement at the arterial 
blood outlet. The complete circuit is CE approved for use up to 30 days. 
 
According to the MAQUET quality policy, a field test has to be performed before the ECLS Set 2.8 can be 
introduced onto the global market. The aim of the field test is to collect and analyze user opinions 
concerning handling, design and functionality. It is not meant to prove the effectiveness or the safety of 
the product as this has already been confirmed in connection with the CE-approval. 
 
The field test took place at 17 pediatric centers in Europe and the Middle East. As of February 2014, 15 
pediatric patients have been supported with the ECLS Set 2.8. The clinical indications for the 
extracorporeal support have been various and both V-A ECMO and V-V ECMO have been performed. 
The longest support run was 29 days. 
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Objective: Although the poly-methylpentene (PMP) oxygenators have significant advantages in ECMO 
implementation, their usage may be limited in some situations, which may be related to economic 
disablements or legal issues regarding to cessation of the unprecedented PMP oxygenators in the market. 
In this report, we aimed to emphasize our cost effective usage of a membrane oxygenator at the ECMO 
setup (Figure 1). 

Methods: We implemented ECMO with eight Capiox® FX05 or Baby RX05 hollow fiber membrane 
oxygenators in five neonatal patients. The data was evaluated regarding the patient characteristics, 
indications for ECMO usage, perioperative course and details about the system setup. The average age 
was 7 months (ranging from 8 days to 12 months), the average weight was 6.240 grams (ranging from 
2.400 grams to 10 kg) and the average body surface area was  0.31 m2 (ranging from 0.17 m2 to 0.45 
m2). The primary indications for the ECMO implementations were post pericardiotomy low cardiac output 
status and the associated respiratory complications. 

Results: The average ECMO duration was 121 hours (ranging from 41 to 272 hours). The membrane 
oxygenators were replaced three times for the first and two times for the second patient, respectively. 
Following the termination of the ECMO, the system was disintegrated into its components for 
macroscopic analysis. Neither gross blood clots nor plasma leakage were observed in any of the 
components. Two of the five patients survived with this implementation. 

Conclusions: The integration of a centrifugal pump and a separate hollow fiber oxygenator may provide 
a cost effective ECMO implementation setup with no adverse effects. This system setup may be an 
encouraging alternative for the low cost usage of ECMO in neonates. 

 

Figure 1: Schematic presentation of the extracorporeal membrane oxygenation system with 
separate membrane oxygenator.  
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Objective:  
The first open-heart surgery was undergone in China in 1958 by Hongxi Su. Since that time, more and 
more doctors engaged in the cardiopulmonary bypass (CPB) in China. Remarkable progress has been 
made over the last 10 years in the extracorporeal circulation (ECC). This article is to survey the condition 
of ECC in China. 
 
Methods:  
The number of cardiac surgery, CPB and ECMO, VAD were collected from 2003 to 2012.  
 
Results:  
The cases of cardiac surgery increased from 76,319 to 204,988, whereas the cases with CPB from 
59,886 to 160,575 in last ten years. In 2003, open-heart surgery was undergone in 467 hospitals whereas 
in 2013, the number increased to 764. However, the cases in each hospital varied from less than 10 to 
more than 10,000 cases with near 9,000 CPB cases. The biggest ten center underwent about a quarter of 
the open-heart surgery. But in about one third hospitals, less than 50 cases per year were treated. It 
showed the unbalance development among the hospitals. 

The rate of open heart surgery and CPB  (per ten thousand people) in different province was varied form 
0.27, 0.23 in Tibet to 14.04, and 9.21 in Beijing. It suggested the development of different area was varied 
because most patients prefer to the biggest centers in Beijing and Shanghai. It showed the unbalance 
among the provinces. 

The history of mechanical circulatory support (MCS), including ECMO and VAD, was less than two 
decades, not so long as in developed country. In 2012, 399 patients were supported by ECMO and 738 
by VAD. Compared to those of 2004, only 84 cases were treated by ECMO in China. The MCS/CPB rate 
is only 0.5%, much lower than that in other country. It showed that many severe patients, who need MCS, 
were not supported by the technique of ECMO and VAD. 
 
Conclusions:  
Although the cases number and technology of ECC grew quickly in recent 10 years, it still much room to 
be improved, including the utility of MCS. In addition, it is necessary to promote of quality control and 
personal training to balance the differences between regions and hospitals. 
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Gregg Roach, CCP, Philadelphia, PA, USA 
 

Abstract:  

Presently in organ transplant surgery, the need for transplantable Lungs has greatly increased and with 
this growing need the availability of viable lungs has remained unchanged. In the past, the problem had 
been that there are a small number of lungs that are deemed transplantable. Refining the criteria for 
recipients has helped and sending out for retrieval a consistent procurement team that physically asses 
the organ has also made the available lungs increase. In addition to these new strategies, another 
alternative that has surfaced is Ex-Vivo Lung Perfusion (EVLP).   

At our institution our lung transplant program performs approximately 50 cases per year. Since its 
inceptions we have done over 800 lung transplants.  We now have started investigating the use of EVLP 
and the long-term benefits of lung reconditioning.   

I would like to talk about our experience with this new and evolving technology, how we perform these 
procedures, and what it’s future means to our institution. 
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Abstract:  

In pediatric cardiac surgery, there is a big gap between published recommendations or guidelines for 
blood product use and clinical practice. However, drawbacks of blood transfusion on systemic 
inflammation and immunity are well acknowledged. The goal of this presentation is to present rationale for 
packed red blood cells, fresh frozen plasma and platelet use in pediatric patients. 

Hemoglobin blood level is the trigger currently use for packed red blood cells transfusion, though it is 
commonly admitted that this trigger is suboptimal. 

An increase in hemoglobin level is likely to be associated with an increase in oxygen blood content and 
oxygen blood delivery. However above a critical level of hemoglobin normovolemic anemia is well 
tolerated and an increase in hemoglobin will failed to achieve an increase in oxygen consumption and 
therefore will not improve end-organ oxygen supply. 

Fresh frozen plasma is one way to correct significant coagulation factors deficiency induced by 
hemodilution, consumption or hepatic insufficiency. The volume of fresh frozen plasma needed to 
increase these factors is not negligible and whenever possible the use of clotting factor concentrate is 
recommended. The same remark can be done for treatment of AT III deficiency. 

Platelets infusion should be restricted to bleeding patients with thrombopenia and without surgical 
bleeding. In clinical studies, prevention of bleeding with prophylactic infusion of platelets proved to be 
useless. 

Optimal use of blood products avoiding overuse, underuse and inappropriate use is challenging in 
pediatric cardiac surgery. No data or guidelines can replace clinical judgment and decision to transfuse is 
left to individual discretion, but the medical community needs to optimize their transfusion practice, 
otherwise policy makers without equivalent expertise may regulate blood product use. 
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Objective:  

The objective of this study is to evaluate three different diameters arterial/venous tubing and three 
diameter arterial cannulae in terms of pressure drop, and hemodynamic energy delivery at in simulated 
pediatric cardiopulmonary bypass (CPB) circuits. 

Methods:  

The CPB circuit consisted of a Terumo Capiox Baby FX05 oxygenator, arterial tubing (1/4in, 3/16in, or 
1/8in x 150cm), and a Medtronic Bio-Medicus arterial cannula (8Fr, 10Fr, or 12Fr). A 300-mL 
pseudopatient was connected to the circuit. The pseudo patient’s pressure was maintained at 50 mmHg 
by a clamp. The circuit was primed using lactated Ringer’s solution and heparinized packed human red 
blood cells (Hematocrit 30%). Trials were conducted in nonpulsatile mode at different flow rates. Flow and 
pressure data were collected using a custom-based data acquisition system. 

Results:  

Using 8Fr arterial cannula at 
500ml/min, small diameter arterial 
tubing generated higher circuit 
pressure and arterial line pressure 
drop (Figure 1). Table 1 presents pre-
oxygenator pressures and arterial 
tubing pressure drops using 10Fr and 
12Fr arterial cannula at different flow 
rates. High flow rate, hypothermia, 
small diameter arterial tubing and 
arterial cannula created more 
hemodynamic energy at pre-
oxygenator site, but energy loss 
across CPB circuit also increased.  

Conclusions:  

Although small diameter (<1/4’) 
arterial/venous tubing may decrease 
total CPB priming volume, it also led 
to significantly higher circuit pressure, 
higher pressure drop, and more 
hemodynamic energy loss across 
CPB circuit.  

 

Figure 1. Pre-oxygenator / pre-
cannula pressures and pressure 
drops across the arterial line tubing 
and arterial cannula. 
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Table 1. Pre-oxygenator/pre-cannula pressures and pressure drops across arterial line tubing and 
arterial cannula. 

Arterial 
cannula 

Arterial 
tubing 

Flow rate 
(ml/min) 

Pressure (mmHg) Pressure drop (mmHg) 

Pre-oxygenator Pre-cannula Arterial line Arterial cannula 

10 Fr 1/4 in 1000 248.0±0.3 131.2±0.2 74.0±0.1 80.8±0.1 

 3/16 in 1000 266.8±0.2 120.2±0.1 111.6±0.0 69.7±0.0 

12 Fr 1/4 in 1500 302.5±0.4 123.8±0.3 92.0±0.2 73.6±0.2 

 3/16 in 1500 324.4±0.3 112.2±0.1 154.0±0.1 62.1±0.1 
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IL33. Developing a Culture of Patient Safety 
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Abstract: 

The Joint Commission on Accreditation of Healthcare Organizations (JCAHO) defines a sentinel event as 
“…An unexpected occurrence involving death or serious physical or psychological injury, or the risk 
thereof.  Serious injury specifically includes loss of limb or function.  Such events are called "sentinel" 
because they signal the need for immediate investigation and response.”  Global changes are often times 
difficult to implement, and even harder to quantify the result for effectiveness.  

At The Children’s Hospital of Philadelphia (CHOP), there has been a major focus in improving patient 
outcomes through launching numerous institutional initiatives. This Journey of Safe Keeping began a little 
over 5 years ago with educating staff to “Practicing with a Questioning Attitude”.   Later, new goals such 
as monitoring the percentage of time staff performed Hand Hygiene, and monitoring the incidence of 
Central Line Associated-Blood Stream Infections were added. This year, we continue to educate ALL 
CHOP staff with a 3 hour course that not only challenges players to practice and apply knowledge of our 
existing safety behaviors, but also introduce two new safety behaviors: recognizing and preventing 
cognitive bias, and improving communication.   

This presentation explores our journey to become the safest pediatric hospital in the country by 2015. 
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Objective: The cerebral, somatic NIRS values and perfusion markers for the assessment of splanchnic 
tissue perfusion after open heart surgery in pediatric patients were correlated with the postoperative 
clinical outcome. 

Methods: There are total 39 pediatric patients (0-2yrs old) which they undergone cardiac surgery in our 
pilot study. 24 of them were in early infantile age (0-3mos) group. We divided in this group 2 categories 
according to cyanosis: Group I: Cyanotic group (n = 29) and Group II: Acyanotic (n =10). All of patients 
were categorized according to Aristotle Complexity Score and Jenkins risk stratification. In Cyanotic group 
including 11 Single Ventricle (1V) patients and 18 biventricular repair (2V) patients (14 with d-
transposition of the great arteries who underwent arterial switch operation).  

The cerebral and somatic (renal and hepatic) NIRS values with renal and hepatic Doppler values (RI and 
peak systolic) were recorded at the same time for each patient (postoperative 1st 4 hour). Descending 
aorta Doppler measurements and NIRS values were also recorded. All of somatic NIRS measurements 
were taken directly under ultrasound. Results were assessed by statistical analysis. 

Results: NIRS database was shown that the mean postoperative rSO2i was higher in the two ventricle 
(2V) group (71%±7 vs. 45%±5, p<0.001). 72% of the single ventricle rSO2i values were 50% or below, 
and 25% of values 40% or below; versus only 12% of values 50% or less, and only 0.1% below 40% in 
the two ventricle patients (p<0.001) rSO2i exhibited a positive correlation with SpO2 in the SV group 
(Pearson correlation 0.25, p<0.001), and a negative correlation with the 2V group (Pearson –0.20, 
p<0.001).  

We found also the cerebral and somatic NIRS (renal, hepatic and descending aorta) values were higher 
significantly at the acyanotic group. (Cerebral p= 0.28; renal p= 0.23; hepatic p= 0.01 and desc.aorta 
p=0.14) and lactate levels were higher significantly at the cyanotic group and these values were 
correlated with NIRS values (p= 0.034).  

All patients survived to hospital discharge except 3 with HLHS who undergone the Norwood procedure, 
those 3 patients and 2 of 2V patients had depressed level of consciousness and seizures. There were 
ischemic changes in basal ganglia and cortex on MRI; all of these patients had low NIRS values (rSO2i 
<50%) in the 48 hours perioperatively. There was no neurologic deficit was seen clinically at the alive 
patients but they follow up by the Pediatric Neurology. Results were confirmed by the EEG screening 
peroperatively in all patients who were undergone CPB or arch repair operation. Pulsatile perfusion mode 
was used to all patients who had undergone CPB.  

Conclusions: The threshold for low rSO2i values associated with neurological dysfunction is estimated to 
be 40%. In cyanotic group with single ventricle pathology, the majority of postoperative rSO2i values was 
below 50%. Very low rSO2i may be associated with the frequent appearance of new hypoxic-ischemic 
brain lesions seen on postoperative MRI.  

We thought that cerebral and somatic NIRS monitoring is clinically useful tool for pediatric open-heart 
surgery, especially early postoperative period. 

  



 

 

49 

S2. Total Artificial Heart Bridge to Transplantation in Pediatric Patients, a 10 
Year Follow-up in 3 Patients 

Hannah Copeland, Richard G. Smith, Francisco Arabia, Jack G. Copeland 

Loma Linda University, Loma Linda, CA 92354, United States 

 

Objective: Over 1260 orthotropic pneumatic pulsatile total artificial hearts for bridge to transplantation 
have been implanted including over 160 during the past year.  Among these have been an increasing 
number of implants in adolescents.  We report here experience with 3 patients under the age of 18 years. 

Methods: We have reviewed our experience with 3 pediatric bridge to transplant patients beginning in 
October 2003 with 10 year follow-up. 

Results: Age, gender, body size, etiology of cardiac disease, support pre-implant, and reason for use of 
TAH are shown in the table. 

Patient 
Age 
(yrs) 

Gender 
Ht(cm)/wt(kg) 
/BSA(sqm) 

Etiology Support pre-implant 
Reason for 
implant 

1 17 M 176/88/2.11 
Methamphetamine 
cardiomyopathy 

IABP, dob, mil, epi Shock 

2 14 F 155/57/1.55 
D-transposition post-
MVR 

Vent, ECMO, Dob, mil, 
epi 

Cardiac arrest 

3 15 M 182/80/2.01 
Becker’s muscular 
dystrophy 

ECMO Cardiac arrest 

Patient 1 was the size of a large adult at presentation, had massive cardiomegaly, and was transferred to 
us in cardiogenic shock on IABP and multiple inotropes.  He was transplanted after 56 d of TAH support.  
He is currently alive and working as a skilled laborer 7 years post-transplantation.   

Patient 2 was transferred to us after hemodynamic collapse and cardiac arrest following a mitral valve 
replacement for mitral regurgitation complicating D-transposition of the great vessels.  She had an atrial 
septostomy and BT shunt followed by a Mustard repair as a baby.  She presented on ECMO and multiple 
inotropes with a blood pressure of 73/53 and had a dilated systemic ventricle. She was 155 cm tall and 
weighed 57 kg with a BSA of 1.55 m2, a body size that, were it not for her huge heart, would have been a 
contraindication to TAH implantation.  However, the TAH fit nicely and she made a rapid recovery of all 
organs with no adverse events and was walking > 600 feet daily at the time of her transplant after 30 days 
of support.  She died of primary graft failure that was felt to be due to preservation injury by clinical and 
histologic criteria.   

Patient 3 had massive 4 chamber cardiac dilatation secondary to Becker’s muscular dystrophy.  He had a 
cardiac arrest during his pre-transplant right heart catheterization and could not be resuscitated.  He was 
placed on ECMO in the catheterization laboratory and taken for emergent TAH implantation.  The right 
and left ventricular walls were < 5mm in thickness and we found scattered and previously undetected 
mural thrombi of the left ventricle.  He was transplanted after 63 days of support.  After discharge, he 
completed high school.  He is alive and functional 10 years post-transplantation. 

Conclusions: All 3 of these patients survived bridge to transplant periods of support ranging from 30 to 
63 days on a TAH without any major adverse event.  All were transplanted.  Two of the 3 have had long 
term survival.  The 14 year old female was supported successfully, but died after transplantation of 
primary graft failure.  Although she was small in stature, there was adequate pericardial space for TAH 
implantation because of her enlarged heart.  These 3 cases are examples of some risks and benefits that 
arise in pediatric bridge to transplantation with a TAH.  
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Abstract: 

Despite many improvements in the treatment of children with postcardiotomy heart failure resistant to 
conventional medical therapy, this remains a significant problem in the pediatric population. To keep 
children alive until restore cardiac function, mechanical circulatory assistance is sometimes needed. 
Historically, there have been used non-pulsatile devices such as extracorporeal membrane oxygenation 
(ECMO) and centrifugal pumps. 

We present institutional results with a series of 5 pediatric patients by applying the centrifugal pump as a 
rescue therapy in postcardiotomy syndrome 

At the National Institute of Cardiology Ignacio Chavez of Mexico City in the last 3 years (2012-2014), five 
cases operated for congenital heart disease have required the use of a centrifugal pump to restore 
cardiac function. Cases: Transposition of the great arteries (2), Atrioventricular canal type A Rastelli (1) , 
Ischemic heart disease secondary to Kawasaki disease(1) and Double Outlet Right Ventricle type 
Taussig Bing (1). Three of them were females. The mean age was 5.4 years (1-15 years old). And the 
average time required for the implementation of the centrifugal pump was 622 min with 60% survival. 

More appropriate circulatory support can be provided by a mechanical ventricular assist device (VAD), 
which acts as a bridge to recovery, allowing for short-term support. These improve patients’ circulation 
and reverse end-organ dysfunction while permitting physical rehabilitation to improve the patient's overall 
condition and likelihood for successful surgical results. Therefore, for Institutions like ours, centrifugal 
pump is an efficient and economical option to treatment the postcardiotomy heart failure. 
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Objective: 

Pediatric patients (<18-year-old) with severe cardiac or pulmonary failure who require transport to a 
medical center are challenge. Mechanical support in the form of extracorporeal membrane oxygenation 
(ECMO) may increase the safety of transporting such patients to an institution where they will have 
access to advanced medical therapy. We reported the experience and result of pediatric ECMO 
transportation in our hospital. 

Methods:  

From January 2000 to January 2013, 36 pediatric patients were successfully cannulated and placed on a 
simplified ECMO circuit at other institutions and transported to National Taiwan University Hospital. The 
mean age was 8.3 years old (ranged from 2 days to 17 years). There were 15 boys and 21 girls. 14 
patients were diagnosed as acute respiratory distress syndrome (ARDS). 4 of them were supported with 
veno-venous (VV) ECMO and 10 of them with systemic shock were supported with veno-arterial (VA) 
ECMO. 7 newborns with persistent pulmonary hypertension were supported with VA ECMO. Other 
patients included 12 acute myocarditis, 2 hypertrophic cardiomyopathy (HOCM) and 1 dilated 
cardiomyopathy (Interhospital Transport) were placed on VA ECMO for isolated cardiogenic shock. 

Results:  

The median distance from unit to unit was 9.6 miles (interquartile range 4-45 miles). There was no 
transport-related morbidity or mortality. The median duration of ECMO support was 13 days (interquartile 
range 3-36 days). 22 patients (61%) were successfully weaning from ECMO and 21 patients (58%) were 
survived up to 3 months and were discharged from the hospital. The survival rate was 50% in ARDS 
group and the survival rate was 42% in acute myocarditis group. 

Conclusions:  

Critically ill pediatric patients with severe respiratory failure or cardiogenic shock can be safely 
transported on VV or VA ECMO support to regional ECMO centers. 
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Objective: We sequenced the entire mtDNA genome from the cardiac atrium tissue sample of a 5 year 
old girl with dextrocardia, ventriculoarterial discordance and tricuspid atresia in order to determine the 
potential risk factors of mtDNA mutation. 

Methods: Genomic DNA was extracted from the atrial cardiac tissue samples. mtDNA was amplified in 
two overlapping PCR fragments (9731bp and 12083bp) using Roche Expand Long Range PCR dNTPack 
(Roche Applied Science Indianapolis, IN). Next generation sequencing was performed using GS FLX 454 
Life Sciences (Roche) platform. The sequence reads (average length 237 bp) were aligned according to 
the revised Cambridge Reference Sequence (rCRS) (NC_012920) using CLCBIO Genomic Workbench 
v6.5.1 (CLCBIO, Denmark). Each mtDNA sample was sequenced with average ~84,30X coverage. Then, 
single nucleotide polymorphisms (SNPs) and deletion-insertion polymorphisms (DIPs) of the patient were 
determined according to the following criteria: variants i) at least in three unique (non-duplicate) 
sequencing reads with both forward and reverse reads, ii) at least 10% frequency among total unique 
sequencing reads at that location, iii) at high quality scores (>Q20 for variants and >Q15 for 3 nucleotides 
at each side of variant). The variations at homopolymeric (>4bp) regions were filtered following a 
probabilistic variant detection approach. 

Results: In total, 1.732.120 
bases were sequenced. 
1.396 979 bases were 
mapped to rCRS with 237 
bp average fragment length, 
and average depth was 
~84,30X. 26 homoplasmic 
and 46 heteroplasmic 
variations were detected 
according to the criteria 
mentioned above. The 
distribution of variations was 
shown in Table 1. All 
homoplasmic and 
heteroplasmic variations 
(with the 10% cut-off) have 
been determined and 
evaluated. 

Conclusions: A 
nonsynonymous new 
mutation was detected at 
the MT-ND1 gene position 
3839 C>T Ser178Leu. The 
patient was clearly in 
haplogroup M7d. 
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Objective:  

This study aimed to assess the feasibility of cardiopulmonary bypass (CPB) priming using autologous 
cord blood in neonatal congenital cardiac surgery. 

Methods:  

From January 2012 to February 2014, four neonatal patients used their own cord blood for CPB priming 
in congenital cardiac surgery. The cord blood had been collected during delivery and stored immediately 
in blood bank after informed consent. 

Results:  

All neonates underwent corrective surgery. The congenital heart disease of them included total 
anomalous pulmonary venous return (TAPVR), transposition of great arteries (TGA) with intact ventricular 
septum and coarctation of aorta (COA) with ventricular septal defect. The median age and body weight at 
total corrective surgery was 8 days (from 1 to 15 days) and 2.98 kg (from 2.18 to 3.65 kg). The median 
amount and hematocrit of collected cord blood during delivery was 62.5 mL (from 43 to 100 mL) and 49.7 % 
(from 32.0 to 51.2 %). The median preoperative hematocrit of neonates was 37.5 % (from 31.0 to 45.0 %). 
And the median amount of CPB priming was 127.5 mL (From 120 to 130 mL). The three out of four 
neonates did not need allo-transfusion in CPB priming and only one neonate used 20 mL of packed RBC 
in CPB priming to obtain target hematocrit.     

Conclusions:  

The autologous cord blood can be used for CPB priming in neonatal congenital cardiac surgery. The 
auto-transfusion of cord blood can replace transfusion of packed RBC in CPB priming partially or totally. 
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Objective: The need for pulsatile flow (PF) as compared to continuous flow (CF) during cardiopulmonary 
bypass (CPB) is still being debated. A challenge when using animal models to compare different pumping 
mechanisms is animal-to-animal variations. We are interested in developing an approach to evaluate CF 
and PF in a single animal to minimize these variations. 

Methods: We developed a protocol in which 30-40 kg pigs are surgically prepared for CPB. A CF pump 
(COBE Cardiovascular, Inc., Arvada, CO) is placed in series with a PF pump (VentriFlo, Design Mentor, 
Inc., Pelham, NH) such that either pump can be used to drive blood through a standard CPB circuit. After 
cannulation, pigs are placed on a single pump for 30 minutes before being switched to the other pump. 
The pumps were switched a total of 6 times over the course of a 3-hour CPB run. Venous and arterial 
blood are drawn throughout the experiment and blood gasses are assayed and used to compare the 
different pumping mechanisms. 

Results: Two pigs were successfully placed on CPB using the developed protocol (Figure 1). Both 
animals were kept on CPB for over 3 hours using the switched pumping scheme with an average flow 
rate of ~2.4 L/min. PF was observed to generate more physiologically equivalent flow and pressure 
waveforms as compared to CF (Figure 2). Because of the small number of animals, no significant 
differences were noted in blood gasses between the different pumping mechanisms. 

Conclusions: It is possible to include two different pumps within a single CPB circuit and to switch 
between these during a CPB run. This approach enables one to compare pumping mechanisms within a 
single animal, which will help to reduce variations present when comparing different flow and pressure 
profiles. 

Funding: Granite State Technology Innovation Grant - NH Innovation Research Council 

 
Figure 1. Circuit implementation. Top: 
Side-by-side CF and PF pumps with 
short tubing segments connecting the 
two to minimize prime volumes. Bottom: 
Complete circuit using clinically 
standard components; animal and 
cannulation site in the top right corner.  

Figure 2. A) Flow profiles for the CF and PF pumping periods measured at 

the input to the arterial cannula (output of arterial filter) with a Transonic 

HQT100 flow meter interfaced through a NI DAQ 6212 data acquisition unit 

and controlled through LabView 2010 software. B) Patient monitor. The 

arterial pressure waveforms, obtained through a femoral line, for both PF 

and CF pumping mechanisms are noted. CF had a systolic/diastolic 

pressure differential of 47/40 while PF had a differential of 90/42. Also note 

that PF had a pulse-ox reading of 99% (yellow number on bottom right of 

monitor), whereas with CF no reading was possible. 
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Objective:  
In a previous study we found that death of neonatal piglets early after cardiopulmonary bypass (CPB) was 
not determined by low cardiac output. In a next step, the explanted hearts of the piglets underwent 
histological examination regarding myocardial tissue alterations. Finally, these changes were compared 
to the histological findings of control piglets. 
 
Methods:  
Initially, 10 neonatal piglets (younger than 7 days) were connected to CPB for 180 minutes, including 90 
minutes of cardioplegic heart arrest at 32°C. In the first hours after CPB (median 3.3 hours), six piglets 
died and these piglets formed the non-survivors group (CPB-NS group). The remaining animals were 
sacrificed 6 hours after CPB (CPB-6 group; n=4). The hearts were explanted and myocardial biopsies 
were taken, fixed, and stained with H&E using standard histological techniques. The specimens were 
scored from 0 to 3 regarding histological alterations. The data of tissue probes were evaluated and 
compared to the probes of animals handled comparable to previous piglets but without CPB (non-CPB 
group; n=3) and to sibling piglets without specific treatment (control; n=5).  
 
Results:  
Although the myocardial histological score of CPB-6 group and CPB-NS group were higher than non-CPB 
group (2.0±0.8, 1.5±0.9, and 0.8±0.3 respectively), these differences were not statistically significant. But 
compared to control animals (score 0.3±0.5) the scores of CPB-6 and CPB-NS groups were significantly 
higher (p<0.05). Between the left and the right ventricular tissue there were no significant differences.  
 
Conclusions:  
The present study revealed significant myocardial tissue alterations after cardiac arrest on 
cardiopulmonary bypass in newborn piglets. These alterations are primarily related to surgical trauma and 
then potentiated by the myocardial ischemia. Additionally, the data show that outcome is not related to 
degree of tissue alteration.  
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Objective:  

Extracorporeal circulation procedures have been shown to induce complement and leukocyte activation, 
release of endotoxin, inflammatory mediators and also protein expression. The aim of the study was to 
evaluate the affinity of these proteins to the phosphorylcholine coated (PCC) and conventional (Non-
Coated) extracorporeal circulation (ECC) tubing. 

Methods:  

Thirty-three consecutive elective coronary bypass grafting cases were included in the study. Patients 
were randomly assigned to PCC (18 patients) and non-coated (15 patients) ECC circuits. Serial blood 
samples were taken before, during and after ECC, and all the tubing lines were cleaned following 
perfusion for protein analysis. All tubes were treated with reducing buffer and samples and negative 
controls were run on a gradient SDS-PAGE gel electrophoresis stained with Coommassie staining. 
Marked protein bands were excised from the gel and digested with trypsin. Protein fractions were 
determined using Matrix Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF). Analysis of 
mass data was done using the Mascot software blasted against swissport database. S100A8 and 
S100A9 specific antibodies were used for immunoblotting experiments.  

Results:  

Analysis of the tubing systems for protein aggregations revealed a prominent band on the SDS-PAGE gel. 
MALDI-TOF test results pointed out the S100A8 and S100A9 proteins. Immunoblotting showed a clear 
demonstration of S100A8-S100A9 heterodimer aggregation on the tubing samples but none was 
observed in the serum samples. 

Conclusions:  

S100 proteins are known to be important for cardiac function. The S100A8 and S100A9 are members of 
the EF-hand family of proteins in which the S100 proteins constitute the largest subfamily. S100A8 and 
S100A9 are small calcium-binding proteins that are highly expressed in neutrophil and monocyte cytosols. 
Recent studies showed that S100A8, S100A9, and S100A8/A9 heterodimer are potent stimulators of 
neutrophils and that they are found at high levels in the extracellular milieu during inflammatory conditions 
or sepsis. Although phosphorylcholine coated ECC systems are designed to improve hemocompatibility, 
our study showed that even coated systems are still open targets for the neutrophils willing to trigger an 
inflammatory status during cardiopulmonary bypass. 
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Objective: One approach with the potential to improve morbidity and mortality rates following 
extracorporeal life support (ECLS) is the use of pulsatile perfusion. Currently, no ECLS pumps used in 
the United States can produce pulsatile flow. The objective of this experiment is to evaluate a novel 
diagonal pump used in Europe to determine whether it provides physiological pulsatility in a neonatal 
model. 

Methods: The ECLS circuit consisted of a Medos Deltastream DP3 diagonal pump, a Hilite 800LT 
polymethylpentene diffusion membrane oxygenator, and arterial/venous tubing. A 300-mL pseudopatient 
was connected to the circuit using an 8Fr arterial cannula and a 10Fr venous cannula. A clamp 
maintained constant pressure entering the pseudopatient. The circuit was primed using lactated Ringer’s 
solution and packed human red blood cells (HCT 35%). Trials (64 totals) were conducted in nonpulsatile 
and pulsatile modes at flow rates of 200 mL/ min to 800 mL/min. Flow and pressure data were collected 
using a custom-based data acquisition system.  

Results: The Deltastream DP3 pump was capable of producing adequate quality of pulsatility (Figure 1). 
Pulsatile flow produced increased mean arterial pressure, energy equivalent pressure (EEP), and surplus 
hemodynamic energy (SHE) at all flow rates compared to nonpulsatile flow (Figure 2). Pressure drop 
across the cannula accounted for the majority of pressure loss in the circuit. The greatest loss of SHE and 
total hemodynamic energy occurred across the arterial cannula due to its small diameter.  

Conclusions: The Deltastream DP3 pump produced physiological pulsatile flow without backflow while 
providing EEP and SHE to our neonatal pseudopatient. Further experiments are necessary to determine 
the impact of this pulsatile pump in an in vivo model prior to clinical use. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow and pressure waveforms at 800 ml/min in 
non-pulsatile (NP) and pulsatile (P) mode.  

Figure 2. Surplus hemodynamic energy (SHE) at the 
preoxygenator and post-arterial cannula sites in 
nonpulsatile (NP) and pulsatile (P) mode at varying 

flow rates. *P < 0.001, NP vs. P. 
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Objective: 

In patients with severe respiratory failure due to lung diseases, extracorporeal membrane oxygenation 
(ECMO) is useful to support the patient until the lung recovery. Veno-venous (VV) ECMO can provide 
adequate oxygenation and is the standard choice for pure respiratory failure. However, if the patients 
combined shock is refractory to inotropic agents or fluid challenge, veno-arterial (VA) ECMO can provide 
oxygenation and maintain organ perfusion. The VA mode has more complication than VV mode. It 
included bleeding and arterial embolic events. The longer duration of ECM support, the more 
complication could happen. In order to minimize the complication and increase the survival rate, we 
chose VA mode as initial support for respiratory failure with shock and shift to VV mode as soon as 
possible when the hemodynamic status was stabilized. We reported our experience and compared to 
previous reports. 

Methods:  

From January 2007 to January 2014, 12 pediatric patients (<18 years old) in our hospital were supported 
with VA ECMO initially due to shock status and we shifted to VV ECMO when the hemodynamic status 
was stabilized after treatment. The mean age was 5.6 years old (ranged from 0 days to 17 years). There 
were 7 boys and 5 girls. 8 patients were diagnosed as acute respiratory distress syndrome (ARDS) due 
to pneumonia. 3 neonatal patients were diagnosed as primary pulmonary hypertension (PPHN), included 
two congenital diaphragm hernia and one meconium aspiration syndrome. 1 of them had CPR history due 
to desaturation. 

Results:  

The median of total ECMO support duration was 24 days (interquartile range 9-30 days). The VA ECMO 
support duration was 12.75 days (interquartile range 6 to 19 days). 11 (91.6%) of them were successful 
weaning from ECMO and discharge. 3 patients had neurological sequel related to hypoxia 
encephalopathy. None of them have complication about limbs ischemia or embolic problem. 

Conclusions:  

The strategy of VA ECMO for initial unstable hemodynamic status and shifting to VV ECMO after 
stabilization reduced complications of prolonged ECMO use. 
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Objective:  

Aortic coarctation (AoCoA) the timing of surgical intervention in the neonatal and infant groups still have 
a high risk of this group vary from center to center due. Our study in a single center with neonatal and 
infant aortic coarctation patients were operated in the group and their pre and postoperative surgical 
approach and our results we aim to provide. 

Methods:  

Between 2002 to 2014, 24 patients which had APW pathology with the signs of cardiac failure mainly 
were operated in our clinic. 14 of them had associated with APW and ınterrupted aortic arch. All of them 
were low birth weight (under 1500 grams) and mean weight was 1.4 kg. They were taken to the surgery 
emergently by echocardiographic diagnosis. In all of the cases, complete correction was successfully 
achieved in a single session via median sternotomy and with cardiopulmonary bypass (CPB) and total 

circulatory arrest (TCA, 18℃). Pulsatile perfusion mode was used in all cases during CPB. 

Results:  

Three patients were died at early postoperative period because of pulmonary hypertensive crises. Early 
and late postoperative periods of our 21 cases in the 6-48 monthly follow-up have no problem. Short 
intubation period (8±2.32 hours) and short ICU (2.21±0.03 days) and hospital stay (7.4±0.42 days) were 
observed in all lived patients. 

Conclusions:  

According to our clinical experience, early surgical intervention to aortic arch obstructions by median 
sternotomy can be performed with an acceptable risk potential. We thought that early intervention and 
especially pulsatile perfusion mode is more suitable choice in this high risk group (according to improved 
patient outcome in maintaining better cardiac, renal and pulmonic function) in the early postoperative 
period. 
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Objective:  

This study compared four pediatric cardiopulmonary bypass (CPB) circuits with four different hollow-fiber 
membrane oxygenators and their specific reservoirs, Capiox RX15, Quadrox-i pediatric, Quadrox-i 
pediatric with integrated arterial filter (IAF) and KIDS D101, in a simulated CPB circuit to test their ability 
to maintain hemodynamic properties, remove gaseous microemboli (GME), and to test the amount of 
blood “stolen” by the arterial filter purge line. 

Methods:  

The circuit was first primed with Ringer’s Lactate solution, then red blood cells were added and the 
hematocrit was maintained at 30%. A 5-cc bolus of air was injected just proximal to the venous reservoir 
over a thirty-second interval and GME were monitored using an Emboli Detection and Classification 
quantifier. Transducers were placed at pre-oxygenator, post-oxygenator and distal arterial line (post-filter) 
positions. Flow probes were also placed both pre and post filter. The injections were made at three flow 
rates, hypothermic and normothermic temperatures, and with the purge line in both the opened and 
closed positions. Six injections were done at each of the 12 experimental conditions. 

Results:  

Results demonstrated that GME in the arterial line increased with increasing temperature and flow rate. 
The Capiox RX15 had the least GME in the arterial line at all experimental conditions. The KIDS D101 
had the largest pressure drop and the lowest retention of hemodynamic energy, while the Capiox had the 
lowest pressure drop (Figure 1). All of the oxygenators had a similar amount of “stolen” blood flow and it 
was consistently under 10% of the total flow reaching the patient. 

Conclusions:  

This study demonstrated that the 
Capiox RX15 circuit was the most 
efficient pediatric circuit tested in 
terms of removing GME from the 
CPB circuit. The pressure drop 
and THE of the Capiox, the 
Quadrox-i and the Quadrox-i with 
arterial filter were all similar. 

 

 

Figure 1. Mean pressure drop 
across all four oxygenators at 
normothermic and hypothermic 
conditions. * p<0.001: KIDS D101 vs. 
other three oxygenators; # p<0.01: 
Quadrox-i with IAF vs. Capiox RX15 
and Quadrox-i. 
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Objective:  

Aortic coarctation repair has ischemic risk for the distal tissues after cross-clamp at. Complex aortic arch 
repairs have greater risk. NIRS is a noninvasive method used to measure regional tissue oxygenation 
continuously and may permit assessment of changes in regional cerebral perfusion in real time. 

Methods:  

Between the May 2012 to date, we operated 46 pediatric patients who had aortic arch abnormalities; 
aortic coarctation (n=32), IAA (N=11, 4 of them with VSD-ASD) and DAA (double aortic arch, n=3). We 
used the NIRS monitoring to real-time changes in cerebral regional oxygenation (rSO2) in patients 
undergoing aortic coarctation repair and/or arch repair routinely. Our data pool allowed us to analyze the 
changes in rSO2during aortic coarctation repair for three pediatric age groups (neonates (≤30 days, 
infants <1 year, and children ≥2yrs). Data for rSO2 were analyzed for each age group according to before, 
during and after cross-clamp. Antegrade cerebral perfusion via innominate artery was used to repair of 
complex aortic arch pathologies at 20-22° C.    

Results:  

46 patients were available for analysis (22 neonates, mean: 6.5days; 18 infants, mean age: 5.2mos and 6 
children, mean age: 4.5yrs). The regional oxygenation below the cross clamp (rSO2-S) declined 
significantly in all three age groups, but the decrease in neonates and  infants was significantly greater 
than in the older children(p<0.05). Four of cases (including one IAA-VSD case) had low (<35-40) NIRS 
values during X-Clamp time. 4 of them had mild and two of them had severe seizures but not recurrence 
at late postoperative period.  As a result of EEG and MRI appliance to these patients, there was no 
specific lesion at brain tissue. The monitoring period were 3 months averagely. During this period, there 
was no neurologic deficit, new attacks and no need to pharmacological therapy including last severe one. 

Conclusions:  

NIRS (rSO2) value provides real-time threshold data of regional cerebral oxygenation under the aortic 
cross-clamp. While the SatO2 changes were minimal at the same time, the decline in rSO2 during aortic 
cross-clamp was rapid and large in most neonates and young infants <1 year which suggests impairment 
of regional cerebral perfusion presumably because of a lack of adequate collateral circulation to the 
monitored regional tissue, and children >1 year, probably reason of that they had time to develop a more 
adequate collateral circulation around the aortic obstruction (p<0.035). Low NIRS values (<40) may 
predict neurologic morbidity early perioperative period especially after X-clamping. Such a complex cases 
like these instances, antegrade cerebral perfusion can safely be used to prevent major brain damages. 
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Objective:  

We explored that is there a difference at perioperative hematologic and lactate parameters (preoperative 
and post CPB) and what is the effect of cyanosis on these values at a clinical setting in this study. 

Methods:  

We chose a similar group who had undergone CPB for congenital heart defects from the patient’s data 
pools at the 2 different centers. In each group, there were 20 patients. Their demographic data (age, BSA, 
weight) and their perioperative parameters (X-clamp, CPB time and flow rate) were identical statistically. 
We compared to our results according to the perfusion modes (Group P vs Group NP).   

Results:  

We found that there was no difference in the hematological variables (Hb, Htc, perioperative usage of 
blood and products and ultrafiltration).  But we found that the difference between the on-off CPB- lactate 
levels were lower in pulsatile group significantly in both cyanotic and acyanotic subgroups. (Cyanotic 
subgroup - pulsatile: 0.43±0.27 vs nonpulsatile: 1.26±0.21; p=0,019 and acyanotic group-pulsatile: 
0.33±0.11 vs nonpulsatile: 1.08±0.12; p=0,045). All patients survived to hospital discharge, and they were 
uneventful clinic outcome in early postoperative period.  

Conclusions:  

Lactate levels are important predictors for clinical outcome. When compared to 2 different perfusion 
modes according to the lactate levels, the expectation of good clinical outcome would be higher in 
pulsatile group. 
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Objective:  

The objective of this study is to evaluate iLA membrane ventilator and icor diagonal pump in terms of 
trans-membrane pressure gradient and hemodynamic energy delivery under non-pulsatile and pulsatile 
modes in a simulated adult ECLS system. Surplus hemodynamic energy (SHE) can be generated only 
under pulsatile flow and maintains better microcirculation and vital organ perfusion. 

Methods:  

The ECLS circuit consisted of i-cor diagonal pump and console (Xenios AG, Heilbronn, Germany), iLA 
membrane ventilator (Xenios AG, Heilbronn, Germany), 3/8-in ID x 160 cm of arterial tubing, and 3/8-in ID 
x 140 cm of venous tubing. A CAPIOX RW30 venous/cardiotomy reservoir (Terumo Corporation, Tokyo, 
Japan) severed as a pseudo patient. The circuit was primed with lactated ringer’s solution and fresh 
whole blood (hematocrit 35%). All trials were conducted at flow rates of 1-3 L/min (1 L/min increments) 
under room temperature. The pulsatile flow settings were set at pulsatile widths of 150ms-250ms (50ms 
increments), and differential speed values of 500 rpm - 4500 rpm (1000 rpm increments). The post-clamp 
pressure was maintained at 150 mmHg during all trials. Flow and pressure data were collected using a 
custom-based data acquisition system. 

Results:  

The oxygenator pressure drops were 5.0 mmHg - 15.8 mmHg at flow rates of 1 L/min to 3 L/min, 
respectively. Under pulsatile mode with increased differential speed values, SHE and total hemodynamic 
energy levels increased (Figure 1). No SHE generated under non-pulsatile mode. Figure 2 presents the 
pre-cannula flow waveforms under pulsatile mode with variable differential speed values at 2 L/min. 

Conclusions:  

The novel iLA membrane ventilator has a lower trans-membrane pressure gradient and allows more 
hemodynamic energy delivered to the patient. Pulsatile flow generates more SHE than non-pulsatile flow. 
Pulsatile settings have a significant impact on the quality of pulsatility. 

 

 

 

 

 

  

Figure 2. Pre-cannula flow waveforms at 2 L/min 
under pulsatile mode with variable differential speed 

values (P500 - P4500) and frequency 75 bpm. 

Figure 1. Surplus hemodynamic energy (SHE) at the 
pre-oxygenator and pre-cannula sites under non-
pulsatile (NP) and pulsatile (P) mode with varying 
differential speed values (P500 - P4500) at 2 L/min. * 

P <0.01, NP vs. P. 
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Objective:  
Mechanical circulatory support (MCS) is frequently used as a rescue for therapy-refractory cardiac 
arrhythmias. It is unclear how intermittent arrhythmias would influence hemodynamics during pulsatile 
MCS when it is used in the synchronized mode. This in-vitro study evaluated the effect of simulated 
arrhythmias on hemodynamics during R-wave triggered pulsatile MCS with the i-cor

®
 kit (Xenios AG, 

Heilbronn, Germany).   
 
Methods:   
The MCS circuit consisted of i-cor

®
 diagonal pump with 3/8-in tubing primed with crystalloid and whole 

blood at room temperature. Flow and pressure data were collected using a customized data acquisition 
system. Arrhythmias were simulated using an ECG simulator for R-wave synchronized pulsatile MCS at 4 
different flow rates (2.5, 3, 3.5 and 4 L/min). Conditions included ventricular tachycardia, ventricular 
fibrillation and atrio-ventricular sequential pacing. Each condition was tested at 4 flow rates with 3 
different ECG synchronization modes (1:1, 1:2 and 1:3 R-wave synchronization). 
 
Results: 
At all flow rates, pulsatile flow with 1:2 synchronization generated optimal surplus hemodynamic energy 
(SHE) during every condition (ventricular fibrillation or tachycardia and AV-sequential pacing) (Figure 1). 
Maximum pulsatile flow waveforms were achieved at 1:2 synchronization, followed by 1:3 and 1:1 ratios. 
At higher flow rates, SHE declined and the pressure drop increased independent of arrhythmia condition. 
Figure 2 presents pulsatile flow waveforms at 2.5 L/min flow under pulsatile mode with various assist 
ratios (1:1, 1:2, and 1:3). During rapid AV-sequential pacing, we observed stalling of the system (panel A 
and C) that seemed to be related inappropriate triggering of pump action by the atrial pacer-spike.          

Conclusions:  
This in-vitro study demonstrated the feasibility of generating R-wave synchronized pulsatile flow with the 
novel i-cor

®
 diagonal pump. There was output even during cardiac arrhythmias. In this in-vitro experiment, 

pump rates around 80/min delivered substantially higher SHE and total hemodynamic energy and 
corresponded to 1:2 synchronization mode. 
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Figure 1. Surplus hemodynamic energy (SHE) during pulsatile ECLS at different flow rates with 
various synchronization modes (1:1, 1:2, 1:3) and different cardiac arrhytmias.     

 

Figure 2. Different cardiac arrhythmia and pre-cannula flow waveforms at 2.5 L/min flow under 
pulsatile mode with various assist ratios (1:1, 1:2, and 1:3).  
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Objective: Although improvements in short and long term outcomes in cardiac surgery are evident, the 
postoperative neurological and renal morbidities still remain as significant problems. The utilization of 
cardiopulmonary bypass (CPB) in pediatric cardiac surgery may lead to impairment of renal functions due 
to cyanosis, increased cerebral vascular resistance and low cardiac output. In this study, we aimed to 
continuously monitor the cerebral and renal perfusion by means of near-infrared spectroscopy (NIRS) in 
patients undergoing pediatric cardiac surgery. 

Methods: 20 patients aged less than 2 years who underwent pediatric cardiac surgical procedures were 
included in the study. Patients were classified into those with cyanotic or not and also complex and simple 
according to ABC risk stratification. Perioperative regional cerebral and renal oxygen saturation indexes 
(rSO2i) were continuously monitored in order to detect the possible cerebral and renal desaturation in the 
postoperative period for assessment of the risk for adverse outcomes. A NIRS sensor (5100 C, INVOS, 
MI, USA) was used for monitoring of patients for perioperative and early postoperative period (first 48 
hours). Cerebral and renal rSO2i was recorded by one minute intervals. Database from all patients in 
each group were collected and analyzed using t-test and chi-square for comparison.  

Results: NIRS data was measured perioperatively and early in the postoperative period in 6 stages; I. 
after induction, II. X-Clamp time, III. CPB termination time, IV. Postoperative fourth hour, V. after 
extubation and VI. postoperative 48th hour. The data was compared in between the groups. We found 
that cerebral and renal NIRS values were lower in the complex group significantly (c-NIRS: p = 0.031 and 
r-NIRS: p =0.044). All of cases had postoperatively uneventful neurological follow up. All patients survived 
to hospital discharge except one patient with hypoplastic left heart syndrome who had undergone 
Norwood procedure. But there was no clinical and neurologic impairment in the operated patients.  

Conclusions: NIRS can be effectively used in patients with complex cardiac pathologies. Both cerebral 
and renal NIRS monitoring may warn the surgery team in order to take precautions. Very low rSO2i (<40) 
may be associated with encountering new hypoxic-ischemic brain lesions seen on postoperative MRI. 
Patients who had lower cerebral NIRS values must be checked with MRI late postoperatively period.   

 

 

 

 

 

 

 

 

 

 

Figure 1. Perioperative cerebral & renal NIRS values. 

  

Perioperative cerebral & renal NIRS values 



 

 

67 

P10. Comparative Effects of Pulsatile and Nonpulsatile Flow on Plasma 
Fibrinolytic Balance in Pediatric Patients Undergoing Cardiopulmonary 
Bypass 
*
Mehmet Aĝırbaşlı, 

†
Jianxun Song, 

†
Fengyang Lei, 

‡
Shigang Wang, 

§
Allen R. Kunselman, 

‡**
Joseph 

B. Clark, 
‡**

John L. Myers, and 
‡**‡‡

Akif Ündar 
*
Department of Cardiology, College of Medicine, Istanbul, Turkey; Department of Microbiology and 
Immunology

†
, Pediatric Cardiovascular Research Center, Department of Pediatrics

‡
, Public Health 

Sciences§, Surgery
**
, Penn State Milton S. Hershey Medical Center, Penn State Hershey College of 

Medicine, Pennsylvania State University, Hershey; and 
‡‡

Department of Bioengineering, College of 
Engineering, Pennsylvania State University, University Park, PA, USA 
 
Objective: In the brain, the components of the fibrinolytic system, tissue plasminogen activator (tPA) and 
its endogenous inhibitor plasminogen activator inhibitor-1 (PAI-1), regulate various neurophysiological 
and pathological responses. Fibrinolytic balance depends on PAI-1 and tPA concentrations. The objective 
of this study is to compare the effects of pulsatile and nonpulsatile perfusion on fibrinolytic balance in 
children undergoing pediatric cardiopulmonary bypass (CPB).  
 
Methods: Plasma PAI-1 antigen and tPA antigen were measured in 40 children (n = 20 pulsatile and n = 

20 nonpulsatile group). Plasma samples (1.5 mL) were collected (i) prior to incision, (ii) 1 h after CPB, and 

(iii) 24 h after CPB. PAI-1 and tPA levels were measured at each time point. 

Results: PAI-1 and tPA levels were significantly increased at 1 h after CPB, followed by a decrease at 24 

h. Nonpulsatile but not pulsatile CPB lowered PAI-1 : tPA ratio significantly at 24 h (median PAI-1 : tPA 

ratio 4.63 ± 0.83:1.98 ± 0.48, P = 0.03, for the nonpulsatile group and 4.50 ± 0.92:3.56 ± 1.28, P = 0.2, for 

the pulsatile group) (Figure 1). 

Conclusions: These results suggest that pulsatile flow maintains endogenous fibrinolytic balance after 
pediatric cardiopulmonary bypass. Further studies are needed to define the clinical significance of these 
differences. 

 

 
Figure 1. PAI-1 : tPA molar ratio results. 
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